Zwitterionic hydrogels exhibit eminent nonfouling and hemocompatibility. Several key challenges hinder their application as coating materials for blood-contacting biomedical devices, including weak mechanical strength and low adhesion to the substrate. Here, we report a poly(carboxybetaine) microgel reinforced poly(sulfobetaine) (pCBM/pSB) pure zwitterionic hydrogel with excellent mechanical robustness and anti-swelling properties. The pCBM/pSB hydrogel coating was bonded to the PVC substrate via the entanglement network between the pSB and PVC chain. Moreover, the pCBM/pSB hydrogel coating can maintain favorable stability even after 21 d PBS shearing, 0.5 h strong water flushing, 1000 underwater bends, and 100 sandpaper abrasions. Notably, the pCBM/pSB hydrogel coated PVC tubing can not only mitigate the foreign body response but also prevent thrombus formation ex vivo in rats and rabbits blood circulation without anticoagulants. This work provides new insights to guide the design of pure zwitterionic hydrogel coatings for biomedical devices.
Macrophage/microglia polarization acts as an important part in regulating inflammatory responses in spinal cord injury (SCI). However, the regulation of inflammation of Schwann cell-derived exosomes (SCDEs) for SCI repair is still unclear. Therefore, we intend to find out the effect of SCDEs on regulating the inflammation related to macrophage polarization during the recovery of SCI. Firstly, the thesis demonstrated that SCDEs could attenuate the LPS- inflammation in BMDMs by suppressing M1 polarization and stimulating M2 polarization. Similarly, SCDEs improved functional recovery of female Wistar rats of the SCI contusion model according to BBB (Basso, Beattie, and Bresnahan) score, electrophysiological assay, and the gait analysis system of CatWalk XT. Moreover, MFG-E8 was verified as the main component of SCDEs to improve the inflammatory response by proteomic sequencing and lentiviral transfection. Improvement of the inflammatory microenvironment also inhibited neuronal apoptosis. The knockout of MFG-E8 in SCs can reverse the anti-inflammatory effects of SCDEs treatment. The SOCS3/STAT3 signaling pathway was identified to participate in upregulating M2 polarization induced by MFG-E8. In conclusion, our findings will enrich the mechanism of SCDEs in repairing SCI and provide potential applications and new insights for the clinical translation of SCDEs treatment for SCI.
The CRISPR/Cas system is one of the most powerful tools for gene editing. However, approaches for precise control of genome editing and regulatory events are still desirable. Here, we report the spatiotemporal and efficient control of CRISPR/Cas9-and Cas12a-mediated editing with conformationally restricted guide RNAs (gRNAs). This approach relied on only two or three pre-installed photo-labile substituents followed by an intramolecular cyclization, representing a robust synthetic method in comparison to the heavily modified linear gRNAs that often require extensive screening and time-consuming optimization. This tactic could direct the precise cleavage of the genes encoding green fluorescent protein (GFP) and the vascular endothelial growth factor A (VEGFA) protein within a predefined cutting region without notable editing leakage in live cells. We also achieved light-mediated myostatin (MSTN) gene editing in embryos, wherein a new bow-knot-type gRNA was constructed with excellent OFF/ON switch efficiency. Overall, our work provides a significant new strategy in CRISPR/Cas editing with modified circular gRNAs to precisely manipulate where and when genes are edited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.