BackgroundThe relation between infant feeding and growth has been extensively evaluated, but studies examining the volume of formula milk consumption on infant growth are limited. This study aimed to examine the effects of early feeding of larger volumes of formula on growth and risk of overweight in later infancy.MethodsIn total, 1093 infants were studied prospectively. Milk records collected at 3 mo of age were used to define the following 3 feeding groups: breast milk feeding (BM, no formula), lower-volume formula milk feeding (LFM, <840 ml formula/d), and higher-volume formula milk feeding (HFM, ≥840 ml formula/d). Body weight and length were measured at 3 time points of 3, 6 and 12 mo of age.ResultsThe results showed that the difference in weight and length between the HFM and BM infants was significant at 3 mo of age (P < 0.05) and continued until 12 mo of age (P < 0.001). The adjusted mean changes in weight-for-length z-scores (WLZ) and BMI-for-age z-scores (BAZ) from 3 to 6 mo of age were significantly higher in HFM and LFM group than in BM group. Two-way interactions between feeding practice and age intervals were significant for WLZ changes (P = 0.002) and BAZ changes (P = 0.017). Compared with BM-fed infants, infants fed with HFM had 1.60-fold (95% CI 1.05–2.44) higher odds of greater body weight (1SD < WLZ ≤2 SD) at the age of 6 mo and 1.55-fold (95% CI 1.01–2.37) higher odds of greater body weight and 2.13-fold (95% CI 1.03–4.38) higher odds of overweight (WLZ > 2 SD) at the age of 12 mo.ConclusionFeeding higher volumes of formula in early infancy is associated with greater body weight and overweight in later infancy.
CD is an independent risk factor for the inability to initiate and sustain breastfeeding. It is desirable to reduce the CD rate and provide specific breastfeeding support during early postpartum period to CD mothers.
The available findings concerning the association between branched-chain amino acids (BCAAs)—particularly leucine—and insulin resistance are conflicting. BCAAs have been proposed to elicit different or even opposite effects, depending on the prevalence of catabolic and anabolic states. We tested the hypothesis that leucine supplementation may exert different effects at different stages of insulin resistance, to provide mechanistic insights into the role of leucine in the progression of insulin resistance. Male Sprague-Dawley rats were fed a normal chow diet, high-fat diet (HFD), HFD supplemented with 1.5% leucine, or HFD with a 20% calorie restriction for 24 or 32 weeks. Leucine supplementation led to abnormal catabolism of BCAA and the incompletely oxidized lipid species that contributed to mitochondrial dysfunction in skeletal muscle in HFD-fed rats in the early stage of insulin resistance (24 weeks). However, leucine supplementation induced no remarkable alternations in BCAA catabolism, but did enhance mitochondrial biogenesis with a concomitant improvement in lipid oxidation and mitochondrial function during the hyperglycaemia stage (32 weeks). These findings suggest that leucine trigger different effects on metabolic signatures at different stages of insulin resistance, and the overall metabolic status of the organisms should be carefully considered to potentiate the benefits of leucine.
Vitamin D deficiency has been reported to be associated with respiratory tract infection (RTI). However, evidence regarding the effects of vitamin D supplementation on susceptibility of infants to RTI is limited. In this prospective birth cohort study, we examined whether vitamin D supplementation reduced RTI risk in 2,244 infants completing the follow‐up from birth to 6 months of age. The outcome endpoint was the first episode of paediatrician‐diagnosed RTI or 6 months of age when no RTI event occurred. Infants receiving vitamin D supplements at a daily dose of 400–600 IU from birth to the outcome endpoint were defined as vitamin D supplementation and divided into four groups according to the average frequency of supplementation: 0, 1–2, 3–4, and 5–7 days/week. We evaluated the relationship between vitamin D supplementation and time to the first episode of RTI with Kaplan–Meier plots. The associations of vitamin D supplementation with infant RTI, lower RTI (LRTI), and RTI‐related hospitalization were assessed using modified Poisson regression. The median time to first RTI episode was 60 days after birth (95% CI [60, 90]) for infants without supplementation and longer than 6 months of age for infants with supplementation (p < .001). We observed inverse trends between supplementation frequency and risk of RTI, LRTI, and RTI‐related hospitalization (p for trend < .001), with the risk ratios in the 5–7 days/week supplementation group of 0.46 (95% CI [0.41, 0.50]), 0.17 (95% CI [0.13, 0.24]), and 0.18 (95% CI [0.12, 0.27]), respectively. These associations were significant and consistent in a subgroup analysis stratified by infant feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.