Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at the subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we theoretically propose the magnetic dipole quasi-BIC resonance in asymmetric silicon nanobar metasurfaces to realize giant Goos-Hänchen (GH) shift enhancement by more than three orders of wavelength. In sharp contrast to GH shift based on the Brewster dip or transmission-type resonance, the maximum GH shift here is located at the reflection peak with unity reflectance, which can be conveniently detected in the experiment. By adjusting the asymmetric parameter of metasurfaces, the Q-factor and GH shift can be modulated accordingly. More interestingly, it is found that GH shift exhibits an inverse quadratic dependence on the asymmetric parameter. Furthermore, we theoretically design an ultrasensitive environmental refractive index sensor based on the quasi-BIC enhanced GH shift, with a maximum sensitivity of 1.5×107
μ
m/RIU. Our work not only reveals the essential role of BIC in engineering the basic optical phenomena but also suggests the way for pushing the performance limits of optical communication devices, information storage, wavelength division de/multiplexers, and ultrasensitive sensors.
The emerging all-dielectric platform exhibits high-quality (Q) resonances governed by the physics of bound states in the continuum (BIC) that drives highly efficient nonlinear optical processes. Here we demonstrate the robust enhancement of third-(THG) and fifth-harmonic generation (FHG) from all-dielectric metasurfaces composed of four silicon nanodisks. Through the symmetry breaking, the genuine BIC transforms into the high-Q quasi-BIC resonance with tight field confinement for record high THG efficiency of 3.9 × 10−4 W−2 and FHG efficiency of 4.8 × 10−10 W−4 using a moderate pump intensity of 1 GW/cm2. Moreover, the quasi-BIC and the resonantly enhanced harmonics exhibit polarization-insensitive characteristics due to the special C4 arrangement of meta-atoms. Our results suggest the way for smart design of efficient and robust nonlinear nanophotonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.