In a search for alternative, environmentally friendly and effective disinfecting agents, a commercially available protease—Neutrase®—was tested in this work for inactivation of koi herpesvirus (KHV) and of viral haemorrhagic septicaemia virus (VHSV). For comparison, the stability of these viral pathogens in similar configurations at various pH values and concentrations of peracetic acid or quicklime, typically used for disinfection, was tested. Therefore, virus suspensions were incubated with various concentrations of different agents for 24 hr and the titre of the remaining infectious particles was determined by virus titration. Furthermore, the treatment of both viruses, with the agents at concentrations that were previously appointed as effective, was also examined in the presence of solid material (quartz sand). All procedures investigated in this study, including the protease treatment, were able to reduce the titre of KHV and VHSV below the detection limit of the titration. Although further studies are necessary, this is the first report of the application of a protease for the inactivation of the selected fish pathogens, demonstrating the great potential of the latter for disinfection.
Swine influenza A viruses (S-IAV) circulate in wild boar populations worldwide.Subtypes primarily reflect those actually present within the respective pig industry. Accordingly, infections with swine H1N1, H1N2 and H3N2 have been reported for several regions of Germany. As pigs are susceptible not only to S-IAV but also to avian and human influenza A viruses, it is necessary to consider the possibility that new reassortant viruses with pandemic potential may arise in these new hosts. Therefore, in this study the impact of recent IAV epidemics on antibody prevalences in Bavarian wild boar was assessed. Important events considered were the H1N1pdm09 pandemic, which affected humans and swine, and the highly pathogenic avian influenza (HPAI) H5N8 panzootic in 2016 and 2017, affecting wild and domestic birds. IAV seroprevalences were determined analysing 1,396 samples from before and after the H5N8 panzootic, from various regions in Bavaria, a large administrative region in the South of Germany. Taken together, seroprevalences varied markedly from 1.44% to 12.59%, relative to region and time. However, no discrete correlation was found to population density either in wild boar or in pigs. Antibodies against H1N1 were the most prevalent. In addition, antibodies were detected reacting against H1N2 and against H1pdmNx reassortant viruses, already known to circulate in domestic pigs in Bavaria and notably also against the avian influenza A virus H5N8; the latter in samples taken in 2017. These results confirm the exposure of wild boar to IAV of diverse origin and the increasing variability of S-IAV present in the field. The necessity for continuous IAV surveillance not only of domestic swine but also of wildlife is emphasized.
Research of cyprinid herpesvirus 3 (CyHV-3) is focused on the infection mechanism and disease development in animals using genetic and immunological approaches to improve treatments and diagnostics. In contrast, only few tried to investigate the CyHV-3 replication behaviour in available cell cultures. Whereas, obtaining high virus yields by in vitro replication enables achieving of the mentioned above goals easier and more reliable. The following work presents an attempt to illuminate the KHV replication in common carp brain (CCB) cell cultures from the engineering point of view. The isolate KHV-TP30 was used testing the influence on process parameters, such as multiplicity of infection (MOI), time of infection (TOI) and time of harvest (TOH). Virus concentrations and infectivity at different time points of infection were examined using hydrolyzed probe qPCR (Gilad et al. 2004) and 50% tissue culture infectivity dose (TCID). The data obtained show that while the amount of the virus DNA remains constant after reaching its maximum, the infectivity of the virus decreases. Thus, especially, TOH can be crucial for generating a high-quality virus stock. Applying optimized parameters improved the infectivity of the harvested virus and reached a robust titre as high as 1.9 × 10 TCID/mL. To our knowledge, so far, there is no information in the peer-reviewed literature showing comparably high virus titres. Such virus yields not only facilitate conduction of further studies, including stability tests of the virus stock under various supplementation or disinfection trails, but also provide enough virus material to perform more detailed examinations of the infection mechanism.
Microalgae are possible sources of antiviral substances, e.g. against cyprinid herpesvirus 3 (CyHV-3). Although this virus leads to high mortalities in aquacultures, there is no treatment available yet. Hence, ethanolic extracts produced with accelerated solvent extraction from six microalgal species (Arthrospira platensis, Chlamydomonas reinhardtii, Chlorella kessleri, Haematococcus pluvialis, Nostoc punctiforme and Scenedesmus obliquus) were examined in this study. An inhibition of the in vitro replication of CyHV-3 could be confirmed for all six species, with the greatest effect for the C. reinhardtii and H. pluvialis crude extracts. At still non-cytotoxic concentrations, viral DNA replication was reduced by over 3 orders of magnitude each compared to the untreated replication controls, while the virus titers were even below the limit of detection (reduction of 4 orders of magnitude). When pre-incubating both cells and virus with C. reinhardtii and H. pluvialis extracts before inoculation, the reduction of viral DNA was even stronger (> 4 orders of magnitude) and no infectious viral particles were detected. Thus, the results of this study indicate that microalgae and cyanobacteria are a promising source of natural bioactive substances against CyHV-3. However, further studies regarding the isolation and identification of the active components of the extracts are needed.
In the recent decades, fish has become increasingly important for human nutrition. It is estimated that 30% of the food fish produced worldwide is attributable to aquaculture, with a rising trend to reach 50% in 2030 (Alonso & Leong, 2013). In Germany, aquaculture is the most productive sector of fish industry with a production volume of ca. 20,600 t of fish in 2017 with rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio) being the most popular species and contributing together to about 65% of annual production (Brämick, 2017). Traditionally, many fish farms in Germany are rather small and often secondary and family-run activity. Nevertheless, an outbreak of a disease, resulting in high mortalities of the affected fish population, leads to losses that can challenge their economic survival independent from the size of the fish farm. The most important viruses that can infect common carp and rainbow trout in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.