This study investigated the bulk nitrogen isotopic composition and fractionation of marine and freshwater cyanobacteria growing at the expense of atmospheric dinitrogen gas (N 2 ) or nitrate (NO { 3 ). In agreement with previous studies, cyanobacteria using N 2 had d 15 N values ranging from 22% to 21% and fractionated by 2-3% against atmospheric N 2 . When grown on NO { 3 , the analyzed cyanobacteria had a remarkably large range in d 15 N, from 214% to 1%, and fractionated by 4-19% relative to the supplied NO { 3 . Interestingly, several of the NO { 3 -utilizing cyanobacteria expressed a nitrogen isotopic signal similar to the one expected for diazotrophic species. Extrapolation to the natural environment indicates that d 15 N signals considered to be associated with dinitrogen fixation could also be generated by NO { 3 utilization, depending on the isotopic composition of the nitrogen source, the degree of fractionation, and the type of cyanobacterium involved.
Under nitrogen-depleted conditions, N2-fixing cyanobacteria of the order Nostocales and Stigonematales differentiate vegetative cells into heterocysts. The cell envelope of these specialized cells contains unique glycolipids, consisting of a sugar moiety glycosidically bound to long-chain diols, triols and hydroxyketones. Only few reports have been published on these glycolipids in cultured cyanobacteria and none has reported them in natural environments. Here we show that heterocyst glycolipids can be rapidly and sensitively analyzed using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC/ESI-MS2). Positive ion mass spectra of the glycolipids consisted of protonated molecules and diagnostic product ions, indicating losses of sugar groups as well as hydroxyl and carbonyl functionalities from an alkyl chain. Using this method, heterocyst glycolipids were for the first time identified in a natural ecosystem, i.e., a microbial mat from the North Sea barrier island Schiermonnikoog, The Netherlands. This technique will facilitate the quick screening of cyanobacterial cultures and natural environments for the presence of heterocyst glycolipids, which may aid in assessing the role of heterocystous cyanobacteria in the global nitrogen cycle.
The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (δ(13) C(TOC) ) and nitrogen (δ(15) N) isotopes as well as by constructing and analyzing 16S rRNA gene libraries. Depending on their position on the littoral gradient, two types of mats were identified, which showed distinct differences regarding the structure, development and composition of the microbial community. Intertidal microbial mats showed a low species diversity with filamentous non-heterocystous Cyanobacteria providing the main mat structure. In contrast, supratidal microbial mats showed a distinct vertical zonation and a high degree of species diversity. Morphotypes of non-heterocystous Cyanobacteria were recognized as the main structural component in these mats. In addition, unicellular Cyanobacteria were frequently observed, whereas filamentous heterocystous Cyanobacteria occurred only in low numbers. Besides the apparent visual dominance of cyanobacterial morphotpyes, 16S rRNA gene libraries indicated that both microbial mat types also included members of the Proteobacteria and the Cytophaga-Flavobacterium-Bacteroides group as well as diatoms. Bulk δ(15) N isotopes of the microbial mats ranged from +6.1‰ in the lower intertidal to -1.2‰ in the supratidal zone, indicating a shift from predominantly nitrate utilization to nitrogen fixation along the littoral gradient. This conclusion was supported by the presence of heterocyst glycolipids, representing lipid biomarkers for nitrogen-fixing heterocystous Cyanobacteria, in supratidal but not in intertidal microbial mats. The availability of combined nitrogen species might thus be a key factor in controlling and regulating the distribution of the diazotrophic microbial community of Schiermonnikoog.
Cyanobacteria capable of fixing dinitrogen exhibit various strategies to protect nitrogenase from inactivation by oxygen. The marine Crocosphaera watsonii WH8501 and the terrestrial Gloeothece sp. PCC6909 are unicellular diazotrophic cyanobacteria that are capable of aerobic nitrogen fixation. These cyanobacteria separate the incompatible processes of oxygenic photosynthesis and nitrogen fixation temporally, confining the latter to the dark. Although these cyanobacteria thrive in fully aerobic environments and can be cultivated diazotrophically under aerobic conditions, the effect of oxygen is not precisely known due to methodological limitations. Here we report the characteristics of nitrogenase activity with respect to well-defined levels of oxygen to which the organisms are exposed, using an online and near real-time acetylene reduction assay combined with sensitive laser-based photoacoustic ethylene detection. The cultures were grown under an alternating 12-12 h light-dark cycle and acetylene reduction was recorded continuously. Acetylene reduction was assayed at 20%, 15%, 10%, 7.5%, 5% and 0% oxygen and at photon flux densities of 30 and 76 mumol m(-2) s(-1) provided at the same light-dark cycle as during cultivation. Nitrogenase activity was predominantly but not exclusively confined to the dark. At 0% oxygen nitrogenase activity in Gloeothece sp. was not detected during the dark and was shifted completely to the light period, while C. watsonii did not exhibit nitrogenase activity at all. Oxygen concentrations of 15% and higher did not support nitrogenase activity in either of the two cyanobacteria. The highest nitrogenase activities were at 5-7.5% oxygen. The highest nitrogenase activities in C. watsonii and Gloeothece sp. were observed at 29 degrees C. At 31 degrees C and above, nitrogenase activity was not detected in C. watsonii while the same was the case at 41 degrees C and above in Gloeothece sp. The differences in the behaviour of nitrogenase activity in these cyanobacteria are discussed with respect to their presumed physiological strategies to protect nitrogenase from oxygen inactivation and to the environment in which they thrive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.