Polarization-insensitive wavelength conversion, as well as the conversion of return-to-zero (RZ) ON-OFF keying (RZ-OOK) to RZ binary phase-shift keying (RZ-BPSK), has been simultaneously achieved at 40 Gb/s for the first time by cross-phase modulation (XPM) in a highly birefringent, nonlinear photonic crystal fiber (PCF). A 10-9-BER receiver sensitivity conversion penalty of < 3 dB was achieved for a polarization scrambled, 40 Gb/s 25%-RZ-OOK pump, when the 40 Gb/s RZ probe was launched at 45 degrees with respect to the birefringence axes of the PCF and when the pump-probe detuning was greater than about 6 nm.
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
We experimentally demonstrate a superior performance of 2.1-Tb/s·km OFDM signal transmission over 100-km long-reach PONs. While the bandwidth of a 100-km SMF transmission system is limited to 4.3 GHz due to positive chirp, we successfully achieve spectrally-efficient 21-Gb/s signaling by using a cost-effective and low-chirp EAM, and adopting the 128-QAM format and adaptive subcarrier pre-emphasis.
By using an optical nonreturn-to-zero (NRZ) format data-stream to injection-lock an synchronously modulated Fabry-Perot laser diode at below threshold condition (without DC driving current), an output data-stream with pseudo-return-to-zero (PRZ) format can be generated at bit rate of up to 2.488 Gbit/s. Such an NRZ-to-PRZ format transformation is due to the injectionlocking induced gain-switching of the FPLD with the incoming NRZ data. The PRZ data-stream with a maximum on/off extinction ratio of 12.2 dB is obtained under the optical injecting power of -2 dBm and the RF driving power of 24.4 dBm. The best side-mode suppression ratio of 40 dB and the lowest timing jitter of 0.4 ps for the PRZ data-stream are observed. A power penalty of 1.2 dB is measured at a bit-error rate of 10-9 after NRZ-to-PRZ transformation. In application, the demonstration of an all-optical OR logic gate using the FPLD-based NRZ-to-PRZ transformer is also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.