Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Plants host diverse microbial communities, which undergo a complex interaction with each other. Plant-associated microbial communities provide various benefits to the host directly or indirectly, viz. nutrient acquisition, protection from pathogen invaders, mitigation from different biotic and abiotic stress. Presently, plant-associated microbial strains are frequently utilized as biofertilizers, biostimulants and biocontrol agents in greenhouse and field conditions and have shown satisfactory results. Nowadays, the plant/fruit microbiome has been employed to control postharvest pathogens and postharvest decay, and to maintain the quality or shelf life of fruits. In this context, the intervention of the natural fruit microbiome or the creation of synthetic microbial communities to modulate the functional attributes of the natural microbiome is an emerging aspect. In this regard, we discuss the community behavior of microbes in natural conditions and how the microbiome intervention plays a crucial role in the postharvest management of fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.