An ecofriendly approach for green synthesis of nanoparticles using natural plant extracts is gaining a notable importance now a days. In the present study, Tridax procumbens leaf has been used to produce the silver nanoparticles (AgNps) from two solvent systems (distilled water and 50% alcohol). Biosynthesis of AgNps from the leaf extracts was carried out and the characterization of the synthesized AgNps was done using UV-Visible spectroscopy, Particle Size Analysis and Scanning Electron Microscope (SEM). Both the extracts exhibited significant results for the biosynthesis of AgNps by using silver nitrate as a reducing agent, the synthesis of AgNps was assertained by colour change from yellowish green to dark brown. The UV-Visible spectroscopy revealed the absorption maxima at 230nm and 235nm for distilled water and 50% alcohol AgNps respectively. The nanoparticle sizes were in the range from 20-154nm which was ascertained from Particle Size Analysis and Scanning Electron Microscope (SEM). The use of nanotechnology in the textile industry has increased rapidly due to its unique and valuable properties. Also, there is an considerable potential for profitable applications of nanotechnology in cotton and other textile industries.
Laminates of L-bends are inherently weak in the through thickness direction at the region of curvature. To address this behavior, experimental investigations have been made to find the influence of graphene oxide (GO) and Kenaf short fibres on interlaminar radial stress of a unidirectional glass epoxy L-bend composite laminate. Kenaf in the range of 5-10 wt% and GO in the range of 1-2 wt% were loaded at each ply at the curvature of a L-bend and their influence on curved beam strength (CBS) was investigated experimentally as per ASTM D6415. L-bend composite specimens with and without fillers were fabricated with the aid of hand lamination technique. Four point bending fixtures were designed and fabricated to hold the specimen firmly in the uniaxial tension machine. Tests were carried out as per ASTM D6415 and load displacement plots were carefully recorded. Experimental data revealed that the laminate loaded with Kenaf fibres at the curvature radius of L-bend had greater influence on CBS and interlaminar stresses than GO. Further, the delaminated surfaces of L-bend at the curvature region was carefully examined using scanning electron microscope to know the interfacial adhesion mechanism of Kenaf and GO with epoxy and glass fibre.
In this paper, the effect of integration of natural fibers in UD carbon fiber is studied. The integration of natural fibers in carbon fiber is made via intra fiber hybridization. Natural fiber hybrid composite samples were prepared for Mode I and Mode II fracture tests. XRD analysis was done for the chosen natural fibres to know the crystallinity index and then compared with Carbon and Glass fibres. The fracture test experimental results, revealed that the effect of Jute fiber integration in UD Carbon epoxy composite was found significant in getting relatively good Mode I and II fracture toughness at the crack initiation without losing its stiffness. In addition to this Kenaf Carbon epoxy composite indicated better crack suppression with 30% higher propagation toughness values as compared other hybrid combinations and pristine composites. It is observed that integration of jute fibers in UD carbon epoxy composites was significant in achieving good mode I and mode II fracture toughness at the crack initiation without losing its stiffness and also kenaf carbon epoxy composites indicated better crack suppression with 30% higher propagation toughness as compared to other hybrid combinations used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.