Power and area saving concepts such as operational amplifier (opamp) bias current reuse and capacitive level shifting are used to lower the analog power of a 10-bit pipelined analog-to-digital converter (ADC) to 220 W/MHz. Since a dual-input bias current reusing opamp performs as two opamps, the opamp summing nodes can be reset in every clock cycle. By using only N-channel MOS (NMOS) input stages, the capacitive level shifter simplifies the gain-boosting amplifier design and enables fast opamp settling with low power-consumption. The prototype achieves 9.2/8.8 effective number of bits (ENOB) for 1-and 20-MHz inputs at 50 MS/s. The ADC works within the temperature range of 0 to 85 C and the supply voltage from 1.62 to 1.96 V with little measured loss in the ENOB. The chip consumes 18 mW (11 mW for the analog portion of the ADC and 7 mW for the rest including buffers) at 1.8 V, and the active area occupies 1 1 1 3 mm 2 using a 0.18-m complementary metal oxide semiconductor (CMOS) process.Index Terms-Capacitor-array multiplying digital-to-analog converter (MDAC), digital-to-analog converter (DAC), low-power technique, opamp-sharing, pipelined analog-to-digital converter (ADC), switched-opamp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.