The ectopic renal function estimation based on a manual region of interest (ROI) extraction could be considered as time consuming. It could also affect the clinical interpretation and thus deviate the therapeutic attitude. For this purpose, we propose an advanced tool to evaluate such function through the dimercaptosuccinic acid (DMSA) kidney scintigraphy scans. Methods. The proposed study has been performed on one hundred patients (fifty cases with normal kidneys and fifty cases with ectopic kidneys). We present our segmentation problems as several cost functions’ optimization, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield each kidney region in near real time. The Dice Metric (DM), the Jaccard Index (JI), and the correlation parameter have been adopted as validation parameters in order to evaluate the segmentation results. The obtained relative function of both kidneys has been then compared with that evaluated in clinical routine (planar projection) and then validated statistically by the Bland–Altman plots and the Interclass Correlation Coefficient (ICC). Results. Compared to the expert’s manual kidney segmentation, the obtained results have been judged to be acceptable for clinical use with high Mean Dice Metric (MDM) value and high Jaccard Index (JI). The evaluated relative renal function has been different from those calculated by the projection planar method usually used in clinical routines. Conclusion. The proposed system could efficiently extract the renal region. The relative function estimation could be considered as more accurate. In fact, the background noise correction and the attenuation phenomenon, which could yield an error measure for renal ectopia, have been avoided. Our clinical staff members have validated the results and have suggested using such tool in their clinical routines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.