The structure-activity relationship of flavonoids as inhibitors of xanthine oxidase and as scavengers of the superoxide radical, produced by the action of the enzyme xanthine oxidase, was investigated. The hydroxyl groups at C-5 and C-7 and the double bond between C-2 and C-3 were essential for a high inhibitory activity on xanthine oxidase. Flavones showed slightly higher inhibitory activity than flavonols. All flavonoid derivatives except isorhamnetin (30) were less active than the original compounds. For a high superoxide scavenging activity on the other hand, a hydroxyl group at C-3' in ring B and at C-3 were essential. According to their effect on xanthine oxidase and as superoxide scavengers, the flavonoids could be classified into six groups: superoxide scavengers without inhibitory activity on xanthine oxidase (category A), xanthine oxidase inhibitors without any additional superoxide scavenging activity (category B), xanthine oxidase inhibitors with an additional superoxide scavenging activity (category C), xanthine oxidase inhibitors with an additional pro-oxidant effect on the production of superoxide (category D), flavonoids with a marginal effect on xanthine oxidase but with a prooxidant effect on the production of superoxide (category E), and finally, flavonoids with no effect on xanthine oxidase or superoxide (category F).
Three different extracts and four alkaloids from the root bark of Cryptolepis sanguinolenta have been assessed in vitro against Plasmodium falciparum D-6 (chloroquine-sensitive strain), K-1, and W-2 (chloroquine-resistant strains). Cryptolepine (1) and its hydrochloride (2), 11-hydroxycryptolepine (3), and neocryptolepine (5) showed a strong antiplasmodial activity against P. falciparum chloroquine-resistant strains. Quindoline (4) was less active. The highest activity was obtained with compound 1. In vivo tests on infected mice showed that cryptolepine (1), when tested as its hydrochloride (2), exhibited a significant chemosuppressive effect against Plasmodium berghei yoelii and Plasmodium berghei, berghei, while 1 had the same effect against P. berghei yoelii only. Compounds 3 and 4 did not show activity in this in vivo test system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.