The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.
Tomato being sensitive to high temperature experiences mild to high temperature stresses under climate change conditions. To understand the response of tomato genotypes to mild temperature stress, a study was conducted in temperature gradient tunnel facility. The results revealed that across the genotypes studied, specific activity of antioxidant enzymes viz., superoxide dismutase (SOD), peroxidase (POX) and glutathione reductase (GR) increased significantly. Among the genotypes, increase in SOD activity was highest in cv. Arka Vikas, followed by IIHR 2195 and least in Abhinava. The GR activity was highest in Abhinava, followed by IIHR 2195 and least in cv. Arka Vikas. The mild temperature stress caused reduction in catalase (CAT) activity. The decrease in CAT activity and concomitant increase in POX activity was observed in cv. Arka Vikas. Low leaf water potential (W leaf ) and higher electrolyte leakage indicated that the membrane integrity was affected across the tomato genotypes even under mild temperature stress. Among the genotypes studied, cv. Arka Vikas showed greater activity of SOD and POX, higher membrane stability and least reduction in water potential under mild temperature stress.
Mulberry (Morus spp.), a commercially exploited tree species as the host of monophagous pest silk worm (Bombyx mori), belongs to the family Moraceae. The domesticated tree has diverse beneficial characters such as traits associated with rapid growth and biomass production, plant insect/microbe interaction, abiotic stress tolerance and the traits associated with nutritional and medicinal values; some of which have been exploited. Draft genome of Morus notabilis has been sequenced and a large volume of transcriptome and genomic resources have been generated. In this review an attempt has been made to examine the options for considering mulberry as another tree model system to study unique traits associated with perennial systems. The diverse traits and features in mulberry suggest that the system can be a "comprehensive trait integrated tree system" quite different from other model tree systems.
Universal stress proteins (USPs) are a conserved group of proteins initially identified and characterized in bacteria. USPs are induced under multiple stresses, and are important for stress acclimation. We cloned a USP-like gene designated as MaUSP1like from mulberry and expressed in bacteria and tobacco to examine its relevance in abiotic stress tolerance.• Escherichia coli and tobacco cells expressing MaUSP1-like gene were exposed to different abiotic stresses, and cell survival and growth was recorded to assess the stress effects.• MaUSP1-like gene conferred tolerance to E. coli cells under NaCl-induced salt stress, PEG8000-induced desiccation stress, cadmium chloride-induced heavy metal stress, and heat stress. Overexpression of MaUSP1-like sustained cell division and growth in tobacco cells under salt stress.• The results demonstrate that MaUSP1-like gene is capable of conferring cellular level tolerance in both prokaryotic and eukaryotic systems, under abiotic stress. The finding opened up an option to argue that maintenance of cellular level tolerance is crucial for sustenance of growth under stress and cellular level tolerance can be improved by overexpressing genes like USPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.