Mammalian parental genomes contribute differently to early embryonic development. Before activation of the zygotic genome, the maternal genome provides all transcripts and proteins required for the transition from a highly specialized oocyte to a pluripotent embryo. Depletion of these maternally-encoded transcripts frequently results in failure of preimplantation embryonic development, but their functions in this process are incompletely understood. We found that female mice lacking NLRP2 are subfertile because of early embryonic loss and the production of fewer offspring that have a wide array of developmental phenotypes and abnormal DNA methylation at imprinted loci. By demonstrating that NLRP2 is a member of the subcortical maternal complex (SCMC), an essential cytoplasmic complex in oocytes and preimplantation embryos with poorly understood function, we identified imprinted postzygotic DNA methylation maintenance, likely by directing subcellular localization of proteins involved in this process, such as DNMT1, as a new crucial role of the SCMC for mammalian reproduction.
The aim of this study was twofold: to investigate the ability of Percoll gradient centrifugation (52, 68, 84%) to fractionate semen samples according to motility quality and percentage normal morphology and to determine whether there is an association between sperm motility quality and percentage normal morphology. Sperm motility was evaluated using a Hamilton Thorn analyzer and normal sperm morphology was manually assessed according to the strict criteria (< or = 4, 5-14, and >14%). The majority of motility parameters and the percentage normal morphology were found to be significantly improved in the 84% Percoll fraction. The greatest effect was on the < or = 4% group, shifting the mean normal morphology percentage from 2.6 to 5.2%. Curvilinear velocity (VCL) and average path velocity (VAP) were the only two motility parameters that were significantly associated with the percentage normal morphology. Using a combined VCL, VAP vector the >14% group was found to have a significantly different value as compared to the 5-14 and < or = 4% groups. Percoll (discontinuous) gradient centrifugation can therefore play a significant role in the improvement of semen samples for use in assisted reproduction procedures. The VCL, VAP vector identified may also serve as an additional tool in the prediction of the fertility potential of sperm samples.
The marked increase in sperm binding among treated zonae, together with the ultrastructural findings, suggest that the altered zona surface enhances sperm binding. The physiological maturational process of the zona pellucida might be manipulated in vitro, thus increasing sperm binding to the zona.
BackgroundHigh proportions of human embryos produced by in vitro fertilization are aneuploidy and mosaic. DNA microarray is one of the most practical screening methods to select euploid embryos for transfer. However, mosaic pregnancy is still possible due to embryonic mosacism. Here we report a successful pregnancy after transfer of a mosaic blastocyst with euploid inner cell mass.MethodsA woman with a previous trisomy 13 pregnancy pursued infertility treatment with preimplantation genetic screening by a trophectoderm biopsy and DNA microarray. NimbleGen oligonucleotide DNA microarray was applied to biopsied samples from 13 blastocysts. A euploid blastocyst was transferred to the patient and subsequent prenatal cytogenetic tests were performed by FISH and/or G banding.ResultsFollowing DNA microarray, it was found that 5 blastocysts were euploid and 8 were aneuploidy. Transfer of one euploid blastocyst resulted in a clinical pregnancy. Prenatal cytogenetic tests of samples biopsied from chorionic villi sample showed both trisomy 21 (47 XX, +21) and euploid (46, XX) cells. Further prenatal cytogenetic test with a sample from amniotic fluid indicated that all cells were euploid (46, XX). The pregnancy was continued and a healthy girl was delivered after 41 weeks of gestation.ConclusionsThis is the first report to indicate a mosaic pregnancy after transfer of a “euploid” blastocyst that was screened by DNA microarray, and the case further confirms that mosaicism is present in human blastocysts produced by in vitro fertilization.
The objective of the current study was to establish a safe, efficient biopsy procedure for embryo splitting using the mouse model for future applications in human assisted reproduction. From mouse embryos at the 2-, 4-, 6- and 8-cell stage, half the number of blastomeres were microsurgically biopsied and transferred into empty mouse zonae pellucidae. Twin embryonic development was monitored during in-vitro culture. Blastocyst developmental rate using 2-, 4-, 6-, and 8-cell splitting was 74.4, 75.0, 66.7 and 38.4 respectively, with corresponding hatching rates of 94.9, 97.5, 92.7 and 83.8%. Blastocysts from 2-, 4-, and 6-cell splitting resulted in elevated hatching rates compared with non-operated blastocysts (87.5%), due to the Tyrode-assisted hatching effect. Blastocyst morphology was superior from 2- and 4-cell splitting when compared with 6- and 8-cell splitting. Furthermore, outgrowth of twin blastocysts from 2- and 4-cell splitting showed well-developed colonies with trophoblast cells and clusters of ICM cells, whereas those obtained from 6- and 8-cell splitting frequently formed small-sized colonies. Due to the high twinning success rate obtained under the experimental conditions employed in this study, it appears that with further modifications and proper safeguards, such embryo splitting efforts could have potential applications in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.