The complexation of U andU in tap water and seawater after the use of a selective membrane was examined. At the first step, many ligands were used for original membranes preparation and their yields in uranium analysis were evaluated by X-ray fluorescence, in order to select the ligand with the highest uranium selectivity in water samples. At the second step the new prepared membrane was used for uranium analysis by α-spectrometry. Various factors were tested for a more effective uranium binding such as a membrane's active surface, water sample volume, equilibration time, and stirring during the process. After membrane complexation, uranium was separated by anion exchange and electroplated onto stainless steel plates in order to prepare suitable α-ray sources; these sources were measured by α-spectrometry and gave high chemical uranium recoveries and very good energy resolution spectra. The method can successfully be applied even for relatively small sample volumes and seawater samples.
The radionuclides released during the accident at the Fukushima Daichii nuclear power plant following the Tōhoku earthquake and tsunami on 11 March 2011 were dispersed in the whole north hemisphere. Traces of (131)I, (134)Cs and (137)Cs reached Greece and were detected in air, grass, sheep milk, ground deposition, rainwater and drainage water. Members of Six Greek laboratories of the national network for environmental radioactivity monitoring have collaborated with the Greek Atomic Energy Commission (GAEC) and carried out measurements during the time period between 11 March 2011 and 10 May 2011 and reported their results to GAEC. These laboratories are sited in three Greek cities, Athens, Thessaloniki and Ioannina, covering a large part of the Greek territory. The concentrations of the radionuclides were studied as a function of time. The first indication for the arrival of the radionuclides in Greece originating from Fukushima accident took place on 24 March 2011. After 28 April 2011', concentrations of all the radionuclides were below the minimum detectable activities (<10 μBq m(-3) for (131)I). The range of concentration values in aerosol particles was 10-520 μBq m(-3) for (131)I, 10-200 μBq m(-3) for (134)Cs and 10-200 μBq m(-3) for (137)Cs and was 10-2200 μBq m(-3) for (131)I in gaseous phase. The ratios of (131)I/(137)Cs and (134)Cs/(137)Cs concentrations are also presented. For (131)I, the maximum concentration detected in grass was 2.2 Bq kg(-1). In the case of sheep milk, the maximum concentration detected for (131)I was 2 Bq l(-1). Furthermore, more than 200 samples of imported foodstuff have been measured in Greece, following the EC directives on the inspection of food and feeding stuffs.
In this paper the focus is on Arnea Chalkidikis, an area in Greece with granitic geological background and indications of possible elevated radon concentration indoors. Data are reported of indoor radon measurements with etched track detectors and those are used for dosimetric estimations. Moreover, data are reported on soil gas and soil radon concentrations in Arnea, as well as radon and uranium concentrations in water samples. From the measured radon concentrations in water samples the contribution to the overall dose has been calculated. For a period of 1 month, indoor radon and progeny activity has also been monitored in the dwelling that has the maximum indoor radon concentration in Greece. This dwelling is in Arnea and the dose delivered to the inhabitants has been calculated. The mean annual effective dose due to indoor radon was 4.5 mSv and about 11% of this was due to the use of water. Mean soil gas concentration and soil radon concentration were (90 +/- 30) kBq m(-3) (p<0.05) and (30 +/- 5) kBq m(-3) (p<0.05) respectively. Mean uranium concentration of the water samples was (98 +/- 13) mBq l(-1) (p<0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.