Uncompressed arachidic acid films spread over 10-3 M cadmium chloride solution (pH 8.8 adjusted with ammonia) spontaneously form two-dimensional (2-D) crystalline clusters with coherence lengths of =loo0 A at 9 "C. Ten distinct low-order in-plane diffraction peaks and three high-order peaks were observed with grazing incidence X-ray diffraction (GID) using synchrotron radiation. Seven low-order peaks were attributed to scattering only from a crystalline cadmium layer and the remaining peaks to scattering primarily from the arachidate layer. The molecules in the arachidate layer arrange in a pseudorectangular unit cell with dimensions a = 4.60 A and b = 8.31 A and y = 93.4O with the chains tilted 1l0 along the b axis. The chains of the two crystallographically independent molecules in the unit cell are related by pseudoglide symmetry along the b axis yielding the herringbone motif. The reflections from the cadmium layer were indexed according to a supercell a, = 2a, b, = 3(-a + b)/2. Analysis of X-ray specular reflectivity measurements and the GID data indicated that the counterionic layer consists of a CdOH+ species, bound to the arachidate layer in a stoichometry close to 1:l. The probable formation of a cadmium-ammonia complex at the high pH = 8.8 was strongly suggested by the X-ray reflectivity measurements employing CH3NH2, (CH&NH, and (CH&N as alternative counterions. The arrangements of the arachidate chains and of the Cd ions were each determined to near atomic resolution by fitting the GID data, but the relative offset between the arachidate and Cd "lattices" was difficult to ascertain.
Synchrotron x-ray diffraction results of phospholipid monolayers at an air/water interface are reported and compared with fluorescence microscopic observations of the fluid-gel lipid phase transition. The pressure-induced transition to an orientationally ordered phase occurs at a pressure z, which is by more than 15 mN/m below a pressure tr, where a transition to a positionally ordered phase occurs. Hence there exists an intermediate phase with long-range orientational and short-range positional order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.