Bidirectional selective genotyping (BSG) carried out on recombinant inbred lines (RILs) derived from the 541 9 Ot1-3 intercross revealed three classes of selection responsive loci underlying preharvest sprouting (PHS) in rye. Ten PHS directional loci (PHSD) located on chromosomes 1RL (3), 3RS(2), 3RL (2), 5RL (2), and 7RS (1) responded significantly to both directions of the disruptive selection and were epistatic to the remaining two classes. Nine PHS resistance loci (PHSR) mapped on chromosomes 1RS, 1RL, 2RS, 3RS, 4RS, 5RS, 5RL, and 6RL (2) responded only to selection for sprouting resistance, being neutral for selection carried out in opposite direction. Eight PHS enhancing loci mapped on chromosomes 2RL, 3RL, 4RL, 5RL, 6RS, and 7RS (3) were affected by selection for sprouting susceptibility and did not respond to selection for sprouting resistance. Map positions of the selection responsive loci coincided with QTLs for PHS and alpha-amylase activity (AA) detected earlier, but BSG coupled with molecular mapping increased precision of PHS dissection in rye. Efficient strategy of marker assisted selection for preharvest sprouting resistance in rye should be based on PHSD and PHSR loci.
A new genetic map of rye, developed by using the 541 x Ot1-3 F2 intercross, consists of 148 marker loci, including 99 RAPDs, 18 SSRs, 14 STSs, 9 SCARs and 7 ISSRs, and spans the distance of 1401.4 cM. To the 7 rye chromosomes, 8 linkage groups were assigned and compared with the reference map of the DS2 x RXL10 F2 intercross by using 24 common markers. The 2 combined maps contain altogether 611 marker loci (70-109 per chromosome) and constitute a substantial source of information useful for further genomic studies in rye. From 21 to 37 RAPD marker loci are distributed randomly along each chromosome length and their total number for all 7 rye chromosomes is 177. This abundance of RAPD marker loci in the rye genetic map can be exploited for development of SCARs in regions containing important genes or QTL.
Aim: The aim of this work was to study the neurophysiological effect of repetitive transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex (DLPFC) in 8 patients with major depression disorder (MDD) and 10 patients with bipolar disorder (BP), considering separately responders and non-responders to rTMS therapy in each of both groups.Methods: The Higuchi’s Fractal Dimension (FD) was analyzed from 64-channels EEG signals in five physiological frequency bands and every channel separately. Changes of FD were analyzed before and after 1st, 10th, and 20th session of rTMS.Results: Some differences in response to the rTMS therapy was found across individual groups. In MDD responders, FD decreased in all bands after longer stimulation (20th session). Whereas, in BP non-responders, FD decreased after 1st session in all bands as well as after 10th session in lower frequencies (delta and theta). In MDD non-responders and BP responders FD increased at the beginning of the therapy (1st and 10th session, respectively), but the final FD value did not changed in comparison to the initial FD value, except the FD decrease for theta band in BP responders. Comparison between groups showed a higher FD in MDD responders than in MDD non-responders in every band before as well as after stimulation. In contrast to MDD patients, FD was lower in BP responders than in BP non-responders in higher frequency bands (alpha, beta, and gamma) in both conditions as well as in lower frequency bands (delta and theta) after stimulation. Comparing both groups of responders, FD was lower in MDD than in BP in every band, except alpha. In case of non-responders, FD was higher in BP than in MDD in all bands in both conditions.Conclusion: The results showed that FD may be useful marker for evaluation of the rTMS effectiveness and the therapy progress as well as for group differentiation between MDD and BP or between responders and non-responders. The changes of FD under the influence of rTMS allow to unambiguously conclude whether the effect of stimulation is positive or negative as well as allow to evaluate an optimal time of rTMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.