Bidirectional selective genotyping (BSG) carried out on recombinant inbred lines (RILs) derived from the 541 9 Ot1-3 intercross revealed three classes of selection responsive loci underlying preharvest sprouting (PHS) in rye. Ten PHS directional loci (PHSD) located on chromosomes 1RL (3), 3RS(2), 3RL (2), 5RL (2), and 7RS (1) responded significantly to both directions of the disruptive selection and were epistatic to the remaining two classes. Nine PHS resistance loci (PHSR) mapped on chromosomes 1RS, 1RL, 2RS, 3RS, 4RS, 5RS, 5RL, and 6RL (2) responded only to selection for sprouting resistance, being neutral for selection carried out in opposite direction. Eight PHS enhancing loci mapped on chromosomes 2RL, 3RL, 4RL, 5RL, 6RS, and 7RS (3) were affected by selection for sprouting susceptibility and did not respond to selection for sprouting resistance. Map positions of the selection responsive loci coincided with QTLs for PHS and alpha-amylase activity (AA) detected earlier, but BSG coupled with molecular mapping increased precision of PHS dissection in rye. Efficient strategy of marker assisted selection for preharvest sprouting resistance in rye should be based on PHSD and PHSR loci.
Rye is a crop with relatively high resistance to biotic and abiotic stresses. However, the resistance to brown rust (Puccinia recondita f. sp. secalis) and pre-harvest sprouting are still not satisfactory. High α-amylase activity is also among the main disadvantages of this species. Therefore, effective tools, e.g. molecular markers, allowing precise and environmentally independent selection of favourable alleles are desirable. In the present study, two kinds of association mapping—genome-wide association mapping (GWAM) based on sequences of DArTSeq markers and candidate gene association mapping (CGAM) based on sequences of ScBx genes—were chosen for development of molecular markers fulfilling these criteria. The analysed population consisted of 149 diverse inbred lines (DILs). Altogether, 67 and 11 single nucleotide polymorphisms (SNPs) identified in, respectively, GWAM and CGAM, were significantly associated with the investigated traits: 2 SNPs with resistance to brown rust, 71 SNPs with resistance to pre-harvest sprouting and 5 SNPs with α-amylase activity in the grain. Fifteen SNPs were stable across all environments. The highest number (13) of environmentally stable SNPs was associated with pre-harvest sprouting resistance. The test employing the Kompetitive Allele Specific PCR method proved the versatility of four markers identified in both GWAM and CGAM.Electronic supplementary materialThe online version of this article (doi:10.1007/s11105-017-1030-6) contains supplementary material, which is available to authorized users.
Bi-directional selective genotyping (BSG) carried out on two opposite groups of F(9)(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS). Two AAD loci on chromosome arm 3RL coincided with PHSD loci. The AAD locus on chromosome arm 3RS was independent from PHS, whereas that on chromosome 6RL belonged to the PHSR class. AAR-PHSR loci were found on chromosomes 4RS (one locus) and 5R (two loci) and AAE-PHSE loci were identified on chromosomes 1RL (one locus) and 5RL (one locus). Some PHSD loci represented the AAE (chromosomes 1RL, 3RS and 3RL) or AAR classes (chromosome 5RL). AAR and AAE loci not related to PHS were found on chromosomes 1RL, 2R, 3RS, 4R, 6RL and 7RL. On the other hand, several PHS loci (1RL, 3RS, 5RL, 6RS and 7RS) had no effect on alpha-amylase activity. Allele originating from the parental line 541 mapped in six AA loci on chromosomes 2R (two loci), 5R (three loci) and 7R (one locus) exerted opposite effects on PHS and alpha-amylase activity. Differences between the AA and PHS systems of loci may explain the weak correlation between these two traits observed among recombinant inbred lines. Strategies for the breeding of sprouting-resistant varieties with low alpha-amylase and high PHS resistance are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.