A highly efficient di-C-glycosyltransferase GgCGT was discovered from the medicinal plant Glycyrrhiza glabra. GgCGT catalyzes a two-step di-C-glycosylation of flopropione-containing substrates with conversion rates of >98%. To elucidate the catalytic mechanisms of GgCGT, we solved its crystal structures in complex with UDP-Glc, UDP-Gal, UDP/phloretin, and UDP/nothofagin, respectively. Structural analysis revealed that the sugar donor selectivity was controlled by the hydrogen-bond interactions of sugar hydroxyl groups with D390 and other key residues. The di-C-glycosylation capability of GgCGT was attributed to a spacious substrate-binding tunnel, and the G389K mutation could switch di- to mono-C-glycosylation. GgCGT is the first di-C-glycosyltransferase with a crystal structure, and the first C-glycosyltransferase with a complex structure containing a sugar acceptor. This work could benefit the development of efficient biocatalysts to synthesize C-glycosides with medicinal potential.
Excited states in 38,40,42 Si nuclei have been studied via in-beam γ-ray spectroscopy with multinucleon removal reactions. Intense radioactive beams of 40 S and 44 S provided at the new facility of the RIKEN Radioactive Isotope Beam Factory enabled γ-γ coincidence measurements. A prominent γ line observed with an energy of 742 (8) 23.20.Lv, 27.40.+z, 29.38.Db Shell closures and collectivity are important properties that characterize the atomic nucleus. Interchange of their dominance along isotopic or isotonic chains has attracted much attention. The recent extension of the research frontier to nuclei far away from the valley of stability has revealed several new phenomena for neutronor proton-number dependent nuclear structure. For example, a weakening or even disappearance of shell closures occur in several neutron-rich nuclei at N = 8 [1][2][3] and N = 20 [4][5][6]. A well known example in the case of N = 20 is the so-called 'island of inversion ' [7] located around the neutron-rich nucleus 32 Mg. The low excitation energy of the first 2 + state E x (2 + 1 ) and large E2 transition probability [4][5][6] clearly indicate shell quenching in 32 Mg despite the fact that N = 20 is traditionally a magic number. The next magic number, N = 28, which appears due to the f 7/2 -f 5/2 spin-orbit splitting, has also been explored [8][9][10][11][12][13]. Weakening of the shell closure is seen by the decrease of the 2 With proton number Z = 14 and neutron number N = 28, the nuclear structure of 42 Si is of special interest. A simple but important question that arises is whether the weakening of the N = 28 shell closure continues, causing an enhancement of nuclear collectivity, or if shell stability is restored owing to a possible doubly magic structure. A study on 42 Si was made by a two-proton removal reaction experiment with radioactive 44 S beams at the NSCL [15]. The small two-proton removal cross sec-
The derivation of human cell lines devoid of mitochondrial (mt) DNA (rho 0) provides an opportunity to study nuclear responses to a chronic impairment of mitochondrial oxidative phosphorylation. Expression of several nuclear genes is induced in human rho 0 cells, including those encoding integral proteins of the mitochondrial inner membrane, intermediate filaments, and ribosomes. In contrast to conditions in which mitochondrial respiration is altered acutely, expression of heat shock proteins and immediate early genes is not induced. Mitochondria from rho 0 cells maintain a transmembrane electrochemical potential and are distributed within the cytoplasm of these cells in a manner indistinguishable from that of wild-type cells. We conclude that a chronic deficiency of mitochondrial oxidative phosphorylation produced by elimination of mtDNA is associated with a different pattern of gene induction than that provoked by other acute or subacute conditions that impair mitochondrial respiration or create energy demands in excess of mitochondrial respiratory capacity.
The expression of many genes of facultatively photosynthetic bacteria of the genus Rhodobacter is controlled by the oxygen tension. Among these are the genes of the puf and puc operons, which encode proteins of the photosynthetic apparatus. Previous results revealed that thioredoxins are involved in the regulated expression of these operons, but it remained unsolved as to the mechanisms by which thioredoxins affect puf and puc expression. Here we show that reduced TrxA of Rhodobacter capsulatus and Rhodobacter sphaeroides and oxidized TrxC of R.capsulatus interact with DNA gyrase and alter its DNA supercoiling activity. While TrxA enhances supercoiling, TrxC exerts a negative effect on this activity. Furthermore, inhibition of gyrase activity strongly reduces puf and puc expression. Our results reveal a new signaling pathway by which oxygen can affect the expression of bacterial genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.