Cells respond to viral infection or double-stranded RNA with the transcriptional induction of a subset of alpha/beta interferon-stimulated genes by a pathway distinct from the interferon signal pathway. The transcriptional induction is mediated through a DNA sequence containing the alpha/beta interferon-stimulated response element (ISRE). We previously identified a novel transcription factor, designated double-stranded RNA-activated factor 1 (DRAF1), that recognizes this response element. The DNA-binding specificity of DRAF1 correlates with transcriptional induction, thereby distinguishing it as a positive regulator of alpha/beta interferon-stimulated genes. Two of the components of DRAF1 have now been identified as interferon regulatory factor 3 (IRF-3) and the transcriptional coactivator CREB-binding protein (CBP)/p300. We demonstrate that IRF-3 preexists in the cytoplasm of uninfected cells and translocates to the nucleus following viral infection. Translocation of IRF-3 is accompanied by an increase in serine and threonine phosphorylation. Coimmunoprecipitation analyses of endogenous proteins demonstrate an association of IRF-3 with the transcriptional coactivators CBP and p300 only subsequent to infection. In addition, antibodies to the IRF-3, CBP, and p300 molecules react with DRAF1 bound to the ISRE target site of induced genes. The cellular response that leads to DRAF1 activation and specific gene expression may serve to increase host survival during viral infection.
SUMMARY
Gut mucosal barrier breakdown and inflammation have been associated with high levels of flagellin, the principal bacterial flagellar protein. Although several gut commensals can produce flagella, flagellin levels are low in the healthy gut, suggesting the existence of control mechanisms. We find that mice lacking the flagellin receptor Toll-like receptor (TLR) 5 exhibit a profound loss of flagellin-specific immunoglobulins (Ig) despite higher total Ig levels in the gut. Ribotyping of IgA-coated cecal microbiota showed Proteobacteria evading antibody coating in the TLR5−/− gut. A diversity of microbiome members over-expressed flagellar genes in the TLR5−/− host. Proteobacteria and Firmicutes penetrated small intestinal villi, and flagellated bacteria breached the colonic mucosal barrier. In vitro, flagellin-specific Ig inhibited bacterial motility and down-regulated flagellar gene expression. Thus, innate-immunity directed development of flagellin-specific adaptive immune responses can modulate the microbiome’s production of flagella in a three-way interaction that helps to maintain mucosal barrier integrity and homeostasis.
We have analyzed the fate of the RNA polymerase II (RNAPII) general transcription factors during the transition from initiation to elongation using multiple approaches. We demonstrate that all of the basal factors coexist in mature initiation complexes but that following nucleotide addition, this complex becomes disrupted. During this transition, TFIID remains promoter-bound whereas TFIIB, TFIIE, TFIIF, and TFIIH are released. Upon release, TFIIB reassociates with TFIID, reforming the RNAPII docking site, the DB complex. TFIIE is released before formation of the tenth phosphodiester bond. This precedes TFIIH release, which occurrs after the transcription complex reaches +30. TFIIF is unique in that it is the only basal factor detected in the RNAPII elongation complex. Following its release from the initiation complex, TFIIF has the ability to reassociate with a stalled RNAPII.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.