Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data.
Proteomic technologies, such as yeast twohybrid, mass spectrometry (MS), protein/peptide arrays and fluorescence microscopy, yield multi-dimensional data sets, which are often quite large and either not published or published as supplementary information that is not easily searchable. Without a system in place for standardizing and sharing data, it is not fruitful for the biomedical community to contribute these types of data to centralized repositories. Even more difficult is the annotation and display of pertinent information in the context of the corresponding proteins. Wikipedia, an online encyclopedia that anyone can edit, has already proven quite successful1 and can be used as a model for sharing biological data. However, the need for experimental evidence, data standardization and ownership of data creates scientific obstacles. Here, we describe Human Proteinpedia (http://www.humanproteinpedia.org/) as a portal that overcomes many of these obstacles to provide an integrated view of the human proteome. Human Proteinpedia also allows users to contribute and edit proteomic data with two significant differences from Wikipedia: first, the contributor is expected to provide experimental evidence for the data annotated; and second, only the original contributor can edit their data. Human Proteinpedia's annotation system provides investigators with multiple options for contributing data including web forms and annotation servers. Although registration is required to contribute data, anyone can freely access the data in the repository. The web forms simplify submission through the use of pull-down menus for certain data fields and pop-up menus for standardized vocabulary terms. Distributed annotation servers using modified protein DAS (distributed annotation system) protocols developed by us (DAS protocols were originally developed for sharing mRNA and DNA data) permit contributing laboratories to maintain protein annotations locally. All protein annotations are visualized in the context of corresponding proteins in the Human Protein Reference Database (HPRD)3. Figure 1 shows tissue expression data for alpha-2-HS glycoprotein derived from three different types of experiments. Our unique effort differs significantly from existing repositories, such as PeptideAtlas and PRIDE5 in several respects. First, most proteomic repositories are restricted to one or two experimental platforms, whereas Human Proteinpedia can accommodate data from diverse platforms, including yeast two-hybrid screens, MS, peptide/protein arrays, immunohistochemistry, western blots, coimmunoprecipitation and fluorescence microscopy-type experiments. Second, Human Proteinpedia allows contributing laboratories to annotate data pertaining to six features of proteins (posttranslational modifications, tissue expression, cell line expression, subcellular localization, enzyme substrates and protein-protein interactions;). No existing repository currently permits annotation of all these features in proteins. Third, all data submitted to Human Proteinpedia...
Crystal engineering has succeeded in the design and construction of various architectures such as tapes, ribbons, rosettes, layers etc. Though wavy layer packing is known to occur in crystals, no crystal engineering attempts have been ventured to create wavy layer topology in crystals. Aromatic nitrogen heterocyclics (ANHs) are known to preferentially self assemble in lateral fashion through edge-to-edge CH.N hydrogen bonds. Exploiting this preferential lateral assembly of ANHs, we have engineered wavy layer architectures in the crystals of various substituted quinolines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.