Cold stress and caffeine ingestion are each reported to increase plasma catecholamines, free fatty acid (FFA) concentrations, and energy metabolism. This study examined the possible interaction of these two metabolic challenges in four double-blind counterbalanced trials. Young adult men (n = 6) ingested caffeine (5 mg/kg) or placebo (dextrose, 5 mg/kg) and rested for 2 h in 28 or 5 degrees C air. Cold stress alone elevated (P less than 0.05) plasma norepinephrine, metabolism (O2 consumption, VO2), and respiratory exchange ratio (RER). Caffeine alone increased (P less than 0.05) plasma epinephrine and FFA but not RER. When the two challenges were combined (caffeine plus 5 degrees C for 2 h) norepinephrine and epinephrine were increased (P less than 0.05) as was FFA. However, VO2, RER, and skin and rectal temperatures were not different from the responses observed at 5 degrees C after placebo ingestion. The data suggest that caffeine selectively increases plasma epinephrine, whereas cold air increases norepinephrine. During the cold exposure, increasing epinephrine and FFA above normal levels did not appear to influence the metabolic or thermal responses to the cold stress. In fact the increase in RER suggested a greater carbohydrate oxidation.
Two types of cold pressor tests were used to study gender differences in cardiovascular and plasma catecholamine responses. Ten male and ten female, young, healthy Caucasian subjects participated. The tests consisted of (1) 5 degrees C air blown at 3.5-4 m/s onto part of the face for 4 min and (2) the open right hand immersed to the wrist in water at 5 degrees C for 4 min. Heart rate, blood pressure (BP), and venous plasma norepinephrine were collected before, during, and 5 min after the 4 min of cold exposures. Test order was decided by a Latin square design, and the subjects rested in a quiet room for 30 min between the two tests. All parameters demonstrated significant (p less than 0.01) increases from rest during the cold tests. Gender differences were significant (p less than 0.01) in diastolic and systolic BP in each test with the males having a greater response, but gender differences were not found in heart rate or norepinephrine concentration. The study demonstrated that gender differences exist in the blood pressure responses to local cold, but that the mechanisms involved do not include a parallel difference in heart rate or venous plasma norepinephrine concentration.
Recently we found that caffeine ingestion did not enhance either thermal or fat metabolic responses to resting in cold air, despite an increase in plasma epinephrine and free fatty acids. Theophylline, another methylxanthine, has been shown to be effective during exercise but not at rest during cold stress. Therefore we hypothesized that caffeine ingestion before exercise in cold air would have a thermal-metabolic impact by increasing fat metabolism and increasing oxygen consumption. Young adult men (n = 6) who did not normally have caffeine in their diet performed four double-blind trials. Thirty minutes after ingesting placebo (dextrose, 5 mg/kg) or caffeine (5 mg/kg) they either exercised (60 W) or rested for 2 h in 5 degrees C air. Cold increased (P less than 0.05) plasma norepinephrine while both caffeine and exercise increased (P less than 0.05) epinephrine. Serum free fatty acids and glycerol were increased, but there were no differences between rest and exercise or placebo and caffeine. Caffeine had no influence on either respiratory exchange ratio or oxygen consumption either at rest or during exercise. The exercise trials did not significantly warm the body, and they resulted in higher plasma norepinephrine concentrations and lower mean skin temperatures for the first 30 min. The data suggest that skin temperature stimulates plasma norepinephrine while caffeine has little effect. In contrast, caffeine and exercise stimulate plasma epinephrine while cold has minimal effect. Within the limits of this study caffeine gave no thermal or metabolic advantage during a cold stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.