Presented is an analysis of the occurrence of postsunset Equatorial Plasma Bubbles (EPBs) detected using a Global Positioning System (GPS) receiver at Vanimo. The three year data set shows that the EPB occurrence maximizes (minimizes) during the equinoxes (solstices), in good agreement with previous findings. The Vanimo ionosonde station is used with the GPS receiver in an analysis of the day-to-day EPB occurrence variability during the 2000 equinox period. A superposed epoch analysis (SEA) reveals that the altitude, and the change in altitude, of the F layer height is ∼1 standard deviation (1 ) larger on the days for which EPBs were detected, compared to non-EPB days. These results are then compared to results from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), which show strong similarities with the observations. The TIEGCM is used to calculate the flux-tube integrated Rayleigh-Taylor (R-T) instability linear growth rate. A SEA reveals that the modeled R-T growth rate is 1 higher on average for EPB days compared to non-EPB days, and that the upward plasma drift is the most dominant contributor. It is further demonstrated that the TIEGCM's success in describing the observed daily EPB variability during the scintillation season resides in the variations caused by geomagnetic activity (as parameterized by Kp) rather than solar EUV flux (as parameterized by F 10.7 ). Geomagnetic activity varies the modeled high-latitude plasma convection and the associated Joule heating that affects the low-latitude F region dynamo, and consequently the equatorial upward plasma drift.
Describing the day‐to‐day variability of Equatorial Plasma Bubble (EPB) occurrence remains a significant challenge. In this study we use the Thermosphere‐Ionosphere Electrodynamics General Circulation Model (TIEGCM), driven by solar (F10.7) and geomagnetic (Kp) activity indices, to study daily variations of the linear Rayleigh‐Taylor (R‐T) instability growth rate in relation to the measured scintillation strength at five longitudinally distributed stations. For locations characterized by generally favorable conditions for EPB growth (i.e., within the scintillation season for that location), we find that the TIEGCM is capable of identifying days when EPB development, determined from the calculated R‐T growth rate, is suppressed as a result of geomagnetic activity. Both observed and modeled upward plasma drifts indicate that the prereversal enhancement scales linearly with Kp from several hours prior, from which it is concluded that even small Kp changes cause significant variations in daily EPB growth.
Myofiber organization in cardiac muscle plays an important role in achieving normal mechanical and electrical heart functions. An imaging tool that can reveal microstructural details of myofiber organization is valuable for both basic research and clinical applications. A high-resolution optical polarization tractography (OPT) was recently developed based on Jones matrix optical coherence tomography (JMOCT). In this study, we validated the accuracy of using OPT for measuring depth-resolved fiber orientation in fresh heart samples by comparing directly with histology images. Systematic image processing algorithms were developed to register OPT with histology images. The pixel-wise differences between the two tractographic results were analyzed in details. The results indicate that OPT can accurately image depth-resolved fiber orientation in fresh heart tissues and reveal microstructural details at the histological level.
The feasibility of predicting the daily occurrence of Global Positioning System scintillation events using forecasts of common geophysical indices to drive a physics‐based model of the system is demonstrated over a 5 month period for the African and Asian longitude sectors. The output from the Wing Kp model, which uses solar wind data to predict the geomagnetic activity level up to 4 h in advance, was used to drive the National Center for Atmospheric Research thermosphere/ionosphere model, from which the strength of the Rayleigh‐Taylor instability growth rate was calculated to determine the likelihood of scintillation. It is found that the physics‐based model demonstrates superior skill to an empirical scintillation model (Wideband Model (WBMOD)) in forecasting scintillation suppression events during seasons when scintillation is common. However, neither of the models driven in this way possess the ability to forecast isolated scintillation events during transitional and off‐peak seasons.
To assess whether Treg/Th17 balance was broken in patients with idiopathic dilated cardiomyopathy (DCM). We studied 25 patients who were diagnosed as idiopathic DCM (18 men and seven women, mean age 35.6 ± 5.2) and 25 normal persons (18 men and seven women, mean age 33.8 ± 4.9). Then, we detected Treg/Th17 functions on different levels including cell frequencies, related cytokine secretion and key transcription factors in patients with idiopathic DCM and controls. The results demonstrated that patients with idiopathic DCM revealed significant increase in peripheral Th17 number, Th17‐related cytokines (IL‐17, IL‐6, IL‐23) and transcription factor (RORγt) levels and obvious decrease in Treg number, Treg‐related cytokines (TGF‐β1 and IL‐10) and transcription factor (Foxp3) levels when compared to normal persons. Results indicated that Treg/Th17 functional imbalance existed in patients with idiopathic DCM, suggesting a potential role for Treg/Th17 imbalance in the development of idiopathic DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.