Sinorhizobium meliloti 1021 responds to external biotin signals from alfalfa plants through the bioS regulatory locus. Immunogold labeling and electron microscopy revealed that the BioS protein is located within the S. meliloti cytoplasm. Under biotin-limiting conditions the S. meliloti cell lumen was filled with polyhydroxybutyrate (PHB) granules suggesting that either PHB synthesis or degradation are influenced by biotin. To test this hypothesis a 3-hydroxybutyrate-dehydrogenase-lacZ (bdhA-lacZ) fusion was mobilized into S. meliloti. L-galactosidase tests revealed an overall 3.6^5.2-fold higher bdhA transcription in the presence of added biotin. Comparison of the bdhA and the bioS promoter regions identified several common motifs. ß
Sinorhizobium meliloti 1021 responds to external biotin signals from alfalfa plants through the bioS regulatory locus. Immunogold labeling and electron microscopy revealed that the BioS protein is located within the S. meliloti cytoplasm. Under biotin-limiting conditions the S. meliloti cell lumen was filled with polyhydroxybutyrate (PHB) granules suggesting that either PHB synthesis or degradation are influenced by biotin. To test this hypothesis a 3-hydroxybutyrate-dehydrogenase-lacZ (bdhA-lacZ) fusion was mobilized into S. meliloti. beta-galactosidase tests revealed an overall 3.6-5.2-fold higher bdhA transcription in the presence of added biotin. Comparison of the bdhA and the bioS promoter regions identified several common motifs.
The Sinorhizobium meliloti nlpD gene consists of 1,539 nucleotides and codes for 512 amino acids. Expression of the nlpD gene as a histidine-tagged protein in Escherichia coli resulted in the production of a 57-kDa protein. The deduced polypeptide sequence of NlpD contains one unusual hexamer repeat (KVQRGQ), one tetramer (TVTV) and two direct and inverted trimer repeats (KAA, AAK). The N-terminal amino acid residues displayed similarity with signal peptides of secreted bacterial lipoproteins. Mutations of the S. meliloti nlpD gene caused decreased survival of cells in the stationary phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.