Lumbar interbody fusion is a common procedure for treating lower back pain related to degenerative disc diseases. The Coflex-F is a recently developed interspinous spacer, the makers of which claim that it can provide stabilisation similar to pedicle screw fixation. Therefore, this study compares the biomechanical behaviour of the Coflex-F device and pedicle screw fixation with transforaminal lumbar interbody fusion (TLIF) or anterior lumbar interbody fusion (ALIF) surgeries by using finite element analysis. The results show that the Coflex-F device combined with ALIF surgery can provide stability similar to the pedicle screw fixation combined with TLIF or ALIF surgery. Also, the posterior instrumentations (Coflex-F and pedicle screw fixation) combined with TLIF surgery had lower stability than when combined with ALIF surgery.
The Coflex device may provide stability to the surgical segment in extension but does not restore stability in other motion. Recently, a modified version called the Coflex rivet has been developed. The effects of Coflex and Coflex rivet implantation on the adjacent segments are still not clear; therefore, the purpose of this study was to investigate the biomechanical differences between Coflex and Coflex rivet implantation by using finite element analyses. The results show that the Coflex implantation can provide stability in extension, lateral bending, and axial rotation at the surgical segment, and it had no influence at adjacent segments except for extension. The Coflex rivet implantation can provide stability in all motions and reduce disc annulus stress at the surgical segment. Therefore, the higher range of motion and stress induced by the Coflex rivet at both adjacent discs may result in adjacent segment degeneration in flexion and extension.
Background: Lumbosacral fusion is a relatively common procedure that is used in the management of an unstable spine. The anterior interbody cage has been involved to enhance the stability of a pedicle screw construct used at the lumbosacral junction. Biomechanical differences between polyaxial and monoaxial pedicle screws linked with various rod contours were investigated to analyze the respective effects on overall construct stiffness, cage strain, rod strain, and contact ratios at the vertebra-cage junction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.