The cytokine interferon gamma (IFN-γ) and doxorubicin mono-therapy has been approved by the Food and Drug Administration (FDA) for the treatment of tumors. The importance of IFN-γ in the immune system lies in its immunomodulatory effects, and the importance of doxorubicin in antitumor therapy lies in inhibiting RNA and DNA synthesis. In this work, the role of IFN-γ in the antitumor activity in combination with doxorubicin was investigated. Meanwhile, IFN-γ was used as a vehicle to load doxorubicin over immunotherapy and chemotherapy for synergistic therapy. IFN-γ/doxorubicin complex nanoparticles were prepared by a fusion method with a size of approximately 13 nm and a low polydispersity index. The doxorubicin release profile was analyzed with different pH ranges, and it showed an enhanced release in acidic pH. The ability of IFN-γ/doxorubicin complex nanoparticles to induce human ovarian carcinoma cell (Skov 3) apoptosis was evaluated by the cytotoxicity test. The cellular uptake of IFN-γ/doxorubicin complex nanoparticles was time-dependent, and the IFN-γ/doxorubicin complex nanoparticles showed a higher apoptosis efficiency than free doxorubicin by flow cytometry analysis and fluorescence imaging. This work bridged IFN-γ with doxorubicin to utilize their potential for antitumor activities, opening new avenues for their use in clinical settings.
Albumin-based hydrogels have emerged as promising nanoparticle systems for the effective delivery of hydrophobic anticancer drugs. Anti-cancer drugs often cause some adverse effects, such as toxicity and rapid clearance by mononuclear phagocytic systems. Herein, a new strategy of synthesizing N-hydroxysuccinimide (NHS)-activated linker to form crosslinkable albumin-based hydrogels (CABH) is reported. The CABH favored physiochemical characteristics improvement of doxorubicin (Dox) and drug release. The CABH was constructed depending on the crosslinking reaction between NHS activated glycerol and albumin. The size of CABH was approximately 200 nm examined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was found that the particle size and size distribution of the CABH remained stable in neutral PBS for 1 week. Dox loaded CABH would be controllably released in weak acidic environment verified by in vitro release and in vitro cell imaging. The Dox loaded hydrogel results in significant killing in the case of acidic culture medium. Our work provides a crosslinking method to formulate albumin nanoplatform and improve the size, stability, drug loading capacity and controlled release, which throws light on the potential application in drug delivery.
Titanium dioxide (TiO2) materials are suitable for use as drug carriers due to their natural biocompatibility and nontoxicity. The aim of the study presented in this paper was to investigate the controlled growth of TiO2 nanotubes (TiO2 NTs) of different sizes via an anodization method, in order to delineate whether the size of NTs governs their drug loading and release profile as well as their antitumor efficiency. TiO2 NTs were tailored to sizes ranging from 25 nm to 200 nm according to the anodization voltage employed. The TiO2 NTs obtained by this process were characterized using scanning electron microscopy, transmission electron microscopy, and dynamic light scattering The larger TiO2 NTs exhibited greatly improved doxorubicin (DOX)-loading capacity (up to 37.5 wt%), which contributed to their outstanding cell-killing ability, as evidenced by their lower half-maximal inhibitory concentration (IC50). Comparisons were carried out of cellular uptake and intracellular release rates of DOX for large and small TiO2 NTs loaded with DOX. The results showed that the larger TiO2 NTs represent a promising therapeutic carrier for drug loading and controlled release, which could improve cancer treatment outcomes. Therefore, TiO2 NTs of larger size are useful substances with drug-loading potency that may be used in a wide range of medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.