Solidification in VAR and ESR processed Alloy 718 ingots was reviewed. Effects of melting phenomena and heat transfer condition on ingot structures were described. Moreover, formation mechanisms and prevention strategies for three major types of defect, i.e., sonic defect, freckles, and white spots were treated in detail. Finally, recent process developments, e.g., hot-topping of VIM electrodes, digital drip short control for VAR, and automatic melting rate control for both VAR and ESR were discussed.
The evaluation index system of urban aquatic ecosystem health is of great significance for the assessment and management of urban river networks, and for urban development planning. In this paper, the concept of urban aquatic ecosystem health was analyzed by the relationship between human, city and aquatic ecosystem, and its evaluation index system was established from environmental conditions, ecological construction, and social service. In addition, the weight value of each index was calculated by the analytic hierarchy process, and the grading standard of each index was set. Jiading New City, a typical city of the river network plain area in Yangtze River delta, was selected as the aquatic ecosystem health evaluation sample. The fuzzy comprehensive method was used to evaluate the aquatic ecosystem health of Jiading New City. The results indicated that the water ecosystem health of Jiading New City reached the “good” level. For the criterion level, environmental conditions and ecological construction reached the “good” level, and social services reached the “excellent” level. For the indicator level, most indicators reached “good” and “excellent” levels, but the river complexity and benthic macroinvertebrate diversity are still in the “poor” state, which indicates that the aquatic environment has greatly improved, but the aquatic ecosystem has not been fully restored. Results suggested that river complexity and biodiversity should be increased in urban construction planning. The evaluation index system established in this paper can be used to reflect the urban aquatic ecosystem health conditions in river network plain areas.
The mechanical properties of fire-damage reinforced concrete columns strengthened with bonded steel angles were studied. Nine specimens were tested, including three normal temperature controlled columns, six heated under ISO834 standard fire. After exposure to fire, three of the six were rehabilitated with the bonded steel angles. It was shown by test results that the destructive properties of reinforced concrete columns with bonded steel angles may change and the small eccentric compression specimens may become large eccentric compression due to the steel angles increased the amount of steel in the tension zone of the specimen. In this research, compared with these under normal temperature, the bearing capacity of specimens which were exposure to fire was only ranged from 0.25 to 0.37 times. But the bearing capacity of specimens rehabilitated by the bonded steel angles can increase to 2.86 to 4.04 times of the originals and it can reach to the level of that in normal temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.