Wood-inhabiting fungi are a cosmopolitan group and show a rich diversity, growing in the vegetation of boreal, temperate, subtropical, and tropical regions. Xylodon grandineus, X. punctus, and X. wenshanensis spp. nov. were found in the Yunnan–Guizhou Plateau, China, suggested here to be new fungal species in light of their morphology and phylogeny. Xylodon grandineus is characterized by a grandinioid hymenophore and ellipsoid basidiospores; X. punctus has a membranous hymenophore, a smooth hymenial surface with a speckled distribution, and absent cystidia; X. wenshanensis has a grandinioid hymenophore with a cream to slightly buff hymenial surface and cystidia of two types. Sequences of the ITS and nLSU rRNA markers of the studied samples were generated, and phylogenetic analyses were performed using the maximum likelihood, maximum parsimony, and Bayesian inference methods. After a series of phylogenetic studies, the ITS+nLSU analysis of the order Hymenochaetales indicated that, at the generic level, six genera (i.e., Fasciodontia, Hastodontia, Hyphodontia, Lyomyces, Kneiffiella, and Xylodon) should be accepted to accommodate the members of Hyphodontia sensu lato. According to a further analysis of the ITS dataset, X. grandineus was retrieved as a sister to X. nesporii; X. punctus formed a monophyletic lineage and then grouped with X. filicinus, X. hastifer, X. hyphodontinus, and X. tropicus; and X. wenshanensis was a sister to X. xinpingensis.
Three wood-inhabiting fungal species, Xylodon gossypinus, X. macrosporus, and X. sinensis spp. nov. were collected from southern China, with the similar function to decompose rotten wood, which are here proposed as new taxa based on a combination of morphological features and molecular evidence. Xylodon gossypinus is characterized by the resupinate basidiomata with cotton hymenophore, and ellipsoid basidiospores; X.macrosporus is characterized by the resupinate basidiomata having the cracking hymenophore with pale yellowish hymenial surface, and larger basidiospores 8–10.5 × 7.5–9 µm; and X. sinensis differs by its grandinioid hymenial surface and subglobose basidiospores measuring as 3–5 × 2.5–4 µm. Sequences of ITS and nLSU rRNA markers of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. The ITS+nLSU analysis in Hymenochaetales revealed that the three new species clustered into the Schizoporaceae family, located in genus Xylodon; based on the ITS dataset, X. gossypinus was a sister to X. ussuriensis; X. macrosporus closely grouped with X.follis with a high support; and X.sinensis was retrieved as two sisters to X. attenuatus and X. yarraensis with a lower support.
A new wood-inhabiting fungus, Phlebia nigrodontea, is proposed based on a combination of morphological features and molecular evidence. The species is characterized by a grandinioid hymenophore with vinaceous brown to black colour, a monomitic hyphal system with clamped generative hyphae and ellipsoid, colourless, thin-walled, smooth basidiospores (3.9–4.9 × 2.3–3.1 µm). Sequences of ITS and LSU nrRNA gene regions of the studied samples were generated, and phylogenetic analyses carried out using maximum likelihood, maximum parsimony and Bayesian inference methods. The phylogenetic analyses based on the molecular data of ITS+nLSU sequences showed that P. nigrodontea nested within the phlebioid clade. A further investigation of more representative taxa from Phlebia, based on ITS+nLSU sequences, demonstrated that the species P. nigrodontea formed a monophyletic lineage with strong support (100% BS, 100% BT, 1.00 BPP) and closely grouped with P. chrysocreas.
Dead wood-associated fungi play an important role in wood degradation and the recycling of organic matter in the forest ecological system. Xenasmataceae is a cosmopolitan group of wood-rotting fungi that grows on tropical, subtropical, temperate, and boreal vegetation. In this study, a new fungal order, Xenasmatales, is introduced based on both morphology and multigene phylogeny to accommodate Xenasmataceae. According to the internal transcribed spacer and nuclear large subunit (ITS+nLSU) and nLSU-only analyses of 13 orders, Xenasmatales formed a single lineage and then grouped with orders Atheliales, Boletales, and Hymenochaetales. The ITS dataset revealed that the new taxon Xenasmatella nigroidea clustered into Xenasmatella and was closely grouped with Xenasmatella vaga. In the present study, Xenasmatella nigroidea collected from Southern China is proposed as a new taxon, based on a combination of morphology and phylogeny. Additionally, a key to the Xenasmatella worldwide is provided.
Trechispora are an important genus of wood-inhabiting fungi that have the ability to decompose rotten wood in the forest ecosystem. In this study, we reported three new species of Trechispora: T. murina, T. odontioidea, T. olivacea from a subtropical region of Yunnan Province, China. Species descriptions were based on a combination of morphological features and phylogenetic analyses of the ITS and LSU region of nuclear ribosomal DNA. Trechispora murina is characterized by the resupinate basidiomata, grandinioid hymenial surface with a greyish tint, monomitic hyphal system and ellipsoid, thick-walled, ornamented basidiospores; T. odontioidea has an odontioid hymenial surface with cylindrical to conical, blunt aculei and subglobose to globose, colorless, slightly thick-walled, ornamented basidiospores; T. olivacea has a farinaceous hymenial surface with olivaceous tint, basidia clavate and thick-walled, ornamented, broadly ellipsoid to globose basidiospores. Sequences of the ITS and nLSU rDNA markers of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. After a series of phylogenetic analyses, the 5.8S+nLSU dataset was constructed to test the phylogenetic relationship of Trechispora with other genera of Hydnodontaceae. The ITS dataset was used to evaluate the phylogenetic relationship of the three new species with other species of Trechispora. Using ITS phylogeny, the new species T. murina was retrieved as a sister to T. bambusicola with moderate supports; T. odontioidea formed a single lineage and then grouped with T. fimbriata and T. nivea; while T. olivacea formed a monophyletic lineage with T. farinacea, T. hondurensis, and T. mollis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.