A flexible air electrode (FAE) with both high oxygen electrocatalytic activity and excellent flexibility is the key to the performance of various flexible devices, such as Zn-air batteries. A facile two-step method, mild acid oxidation followed by air calcination that directly activates commercial carbon cloth (CC) to generate uniform nanoporous and super hydrophilic surface structures with optimized oxygen-rich functional groups and an enhanced surface area, is presented here. Impressively, this two-step activated CC (CC-AC) exhibits superior oxygen electrocatalytic activity and durability, outperforming the oxygen-doped carbon materials reported to date. Especially, CC-AC delivers an oxygen evolution reaction (OER) overpotential of 360 mV at 10 mA cm −2 in 1 m KOH, which is among the best performances of metal-free OER electrocatalysts. The practical application of CC-AC is presented via its use as an FAE in a flexible rechargeable Zn-air battery. The bendable battery achieves a high open circuit voltage of 1.37 V, a remarkable peak power density of 52.3 mW cm −3 at 77.5 mA cm −3 , good cycling performance with a small chargedischarge voltage gap of 0.98 V and high flexibility. This study provides a new approach to the design and construction of high-performance selfsupported metal-free electrodes.
A facile strategy to synthesize the novel composite paper of graphene nanosheets (GNS) coated Co(3)O(4) fibers is reported as an advanced anode material for high-performance lithium-ion batteries (LIBs). The GNS were able to deposit onto Co(3)O(4) fibers and form the coating via electrostatic interactions. The unique hybrid paper is evaluated as an anode electrode for LIBs, and it exhibits a very large reversible capacity (∼840 mA h g(-1) after 40 cycles), excellent cyclic stability and good rate capacity. The substantially excellent electrochemical performance of the graphene/Co(3)O(4) composite paper is the result from its unique features. Notably, the flexible structure of graphenic scaffold and the strong interaction between graphene and Co(3)O(4) fibers are beneficial for providing excellent electronic conductivity, short transportation length for lithium ions, and elastomeric space to accommodate volume varies upon Li(+) insertion/extraction.
Although the carbon-supported single-atom (SA) electrocatalysts (SAECs) have emerged as a new form of highly efficient oxygen reduction reaction (ORR) electrocatalysts, the preferable sites of carbon support for anchoring SAs are somewhat elusive. Here, a KOH activation approach is reported to create abundant defects/vacancies on the porous graphitic carbon nanosphere (CNS) with selective adsorption capability toward transition-metal (TM) ions and innovatively utilize the created defects/ vacancies to controllably anchor TM-SAs on the activated CNS via TMN x coordination bonds. The synthesized TM-based SAECs (TM-SAs@N-CNS, TM: Cu, Fe, Co, and Ni) possess superior ORR electrocatalytic activities. The Cu-SAs@N-CNS demonstrates excellent ORR and oxygen evolution reaction (OER) bifunctional electrocatalytic activities and is successfully applied as a highly efficient air cathode material for the Zn-air battery. Importantly, it is proposed and validated that the N-terminated vacancies on graphitic carbons are the preferable sites to anchor Cu-SAs via a Cu(NC 2 ) 3 (NC) coordination configuration with an excellent promotional effect toward ORR. This synthetic approach exemplifies the expediency of suitable defects/vacancies creation for the fabrication of high-performance TM-based SAECs, which can be implemented for the synthesis of other carbon-supported SAECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.