Thermal interface materials (TIMs) play a critical role in conventionally packaged electronic systems and often represent the highest thermal resistance and/or least reliable element in the heat flow path from the chip to the external ambient. In defense applications, the need to accommodate large differences in the coefficients of thermal expansion (CTE) among the packaging materials, provide for in-field reworkability, and assure physical integrity as well as long-term reliability further exacerbates this situation. Epoxy-based thermoplastic TIMs are compliant and reworkable at low temperature, but their low thermal conductivities pose a significant barrier to the thermal packaging of high-power devices. Alternatively, while solder TIMs offer low thermal interface resistances, their mechanical stiffness and high melting points make them inappropriate for many of these applications. Consequently, Defense Advanced Research Projects Agency (DARPA) initiated a series of studies exploring the potential of nanomaterials and nanostructures to create TIMs with solderlike thermal resistance and thermoplasticlike compliance and reworkability. This paper describes the nano-TIM approaches taken and results obtained by four teams responding to the DARPA challenge of pursuing the development of low thermal resistance of 1 mm2 K/W and high compliance and reliability TIMs. These approaches include the use of metal nanosprings (GE), laminated solder and flexible graphite films (Teledyne), multiwalled carbon nanotubes (CNTs) with layered metallic bonding materials (Raytheon), and open-ended CNTs (Georgia Tech (GT)). Following a detailed description of the specific nano-TIM approaches taken and of the metrology developed and used to measure the very low thermal resistivities, the thermal performance achieved by these nano-TIMs, with constant thermal load, as well as under temperature cycling and in extended life testing (aging), will be presented. It has been found that the nano-TIMs developed by all four teams can provide thermal interface resistivities well below 10 mm2 K/W and that GE's copper nanospring TIMs can consistently achieve thermal interface resistances in the range of 1 mm2 K/W. This paper also introduces efforts undertaken for next generation TIMs to reach thermal interface resistance of just 0.1 mm2 K/W.
Defense Advanced Research Project Agency's (DARPA's) thermal ground plane (TGP) effort was aimed at combining the advantages of vapor chambers or two-dimensional (2D) heat pipes and solid conductors by building thin, high effective thermal conductivity, flat heat pipes out of materials with thermal expansion coefficients that match current electronic devices. In addition to the temperature uniformity and minimal load-driven temperature variations associated with such two phase systems, in their defined parametric space, flat heat pipes are particularly attractive for Department of Defense and commercial systems because they offer a passive, reliable, light-weight, and low-cost path for transferring heat away from high power dissipative components. However, the difference in thermal expansion coefficients between silicon or ceramic microelectronic components and metallic vapor chambers, as well as the need for a planar, chip-size attachment surface for these devices, has limited the use of commercial of the shelf flat heat pipes in this role. The primary TGP goal was to achieve extreme lateral thermal conductivity, in the range of 10 kW/mK–20 kW/mK or approximately 25–50 times higher than copper and 10 times higher than synthetic diamond, with a thickness of 1 mm or less.
As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm K/W for a typical bond-line thickness of 30-50 μm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.
ratios in the parent gels on the crystallization of nanoparticles of T-type zeolites were studied. A Taguchi orthogonal experimental design with the above-mentioned parameters (each at three levels) was used to optimize the experiment parameters by the analysis of variances (ANOVA). Applying the Taguchi method significantly reduced the time and cost required for optimization. The synthesized products were characterized by X-ray diffraction and scanning electron microscopy. As a result of the Taguchi analysis, H 2 O/SiO 2 and TMAOH/SiO 2 were the most influencing parameters for the synthesis of zeolite T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.