Background Diabetic kidney disease (DKD) is among the most important causes for chronic kidney disease. Anthocyanins (ANT) are polyphenolic compounds present in various food and play an important role in ameliorating hyperglycemia and insulin sensitivity. However, the effects of ANT in DKD are still poorly understood. This study aimed to investigate the effect of ANT (cyanidin-3-O-glucoside [C3G]) on the renal function of DKD, and whether the anti-DKD effect of ANT is related to metabolic pathways. Methods To explore the role of ANT in DKD, we performed the examination of blood glucose, renal function, and histopathology. As for the mechanism, we designed the label-free quantification proteomics and nontargeted metabolomics analysis for kidney and serum. Subsequently, we revealed the anti-DKD effect of ANT through the bioinformatic analysis. Results We showed that the fasting blood glucose level (− 6.1 mmol/L, P = 0.037), perimeter of glomerular lesions (− 24.1 μm, P = 0.030), fibrosis score of glomerular (− 8.8%, P = 0.002), and kidney function (Cystatin C: − 701.4 pg/mL, P = 0.043; urine creatinine: − 701.4 mmol/L, P = 0.032) were significantly alleviated in DKD mice after ANT treatment compared to untreated in the 20th week. Further, proteins and metabolites in the kidneys of DKD mice were observed to be dramatically altered due to changes in amino acid metabolism with ANT treatment; mainly, taurine and hypotaurine metabolism pathway was upregulated (P = 0.0001, t value = 5.97). Furthermore, upregulated tryptophan metabolism (P < 0.0001, t value = 5.94) and tyrosine metabolism (P = 0.0037, t value = 2.91) pathways had effects on serum of DKD mice as responsed ANT regulating. Conclusions Our results suggested that prevention of the progression of DKD by ANT could be related to the regulation of amino acid metabolism. The use of dietary ANT may be one of the dietary strategies to prevent and treat DKD.
Departmental sources Background: Annular fiber closure techniques have been proven effective in reducing short-term recurrence after discectomy. However, annular fiber closure devices are expensive and still fail at a low rate. We present a novel suture method, needle-guided annular closure suture (NGACS) that does not require a special device and can be performed for annular fiber closure following microendoscopic discectomy. Material/Methods: Twenty-five patients who underwent treatment with NGACS were reviewed by analysis of the medical records. The clinical outcomes were assessed and compared preoperatively and immediately, 1, 6, and 12 months postoperatively. The parameters included the Visual Analog Scale (VAS)-back and VAS-leg scores and the Oswestry Disability Index (ODI). Midsagittal T2WI images were obtained to evaluate lumbar disc degeneration using the Pfirrmann grade. Additional adverse events were also recorded and tracked. Results: The VAS-back and VAS-leg scores and the ODI were significantly different at each follow-up time point (P<0.001), and improvements in pain and disability were maintained well during the follow-up period. Lumbar disc reherniation or other serious adverse events were not observed in this series. There was no significant difference between the initial and final Pfirrmann grades (Z=-1.414, P=0.157). The preoperative average disc height was 9.94±1.97 mm, and the disc height at 12 months after surgery was 9.14±1.88 mm. The average decrease in disc height was 8.11±3.36%. Conclusions: This study demonstrates the feasibility and superior clinical outcomes of the NGACS technique. This method can be a good substitution when annular fiber closure devices are not available. Moreover, this technique can be easily popularized due to its low cost and few restrictions.
Polymethylmethacrylate (PMMA) bone cement extensively utilized for the treatment of osteoporotic vertebral compression fractures due to its exceptional handleability and mechanical properties. Nevertheless, the clinical application of PMMA bone cement is restricted by its poor bioactivity and excessively high modulus of elasticity. Herein, mineralized small intestinal submucosa (mSIS) was incorporated into PMMA to prepare a partially degradable bone cement (mSIS–PMMA) that provided suitable compressive strength and reduced elastic modulus compared to pure PMMA. The ability of mSIS-PMMA bone cement to promote the attachment, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells was shown through cellular experiments carried out in vitro, and an animal osteoporosis model validated its potential to improve osseointegration. Considering these benefits, mSIS-PMMA bone cement shows promising potential as an injectable biomaterial for orthopedic procedures that require bone augmentation.
This paper presents a novel place recognition approach to autonomous vehicles by using low-cost, single-chip automotive radar. Aimed at improving recognition robustness and fully exploiting the rich information provided by this emerging automotive radar, our approach follows a principled pipeline that comprises (1) dynamic points removal from instant Doppler measurement, (2) spatial-temporal feature embedding on radar point clouds, and (3) retrieved candidates refinement from Radar Cross Section measurement. Extensive experimental results on the public nuScenes dataset demonstrate that existing visual/LiDAR/spinning radar place recognition approaches are less suitable for single-chip automotive radar. In contrast, our purpose-built approach for automotive radar consistently outperforms a variety of baseline methods via a comprehensive set of metrics, providing insights into the efficacy when used in a realistic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.