Heavy metal pollution of soil restricts the sustainable use of land and poses risks to human health throughout the world. Changes in the physicochemical properties of soil may increase the mobility of heavy metals in the soil ecosystem and lead to groundwater pollution. In this study, the effects of different salt solutions (NaCl, CaCl2, NaNO3, MgCl2, Na2SO4, and mixed salts) on the release of Cd from soil were investigated by batch desorption tests and the Freundlich isothermal sorption model. Increased concentrations of the salts, except for NaNO3, significantly promoted Cd release (R2 > 0.9, p < 0.01). Under the salt stress, Cd release from the test soils was promoted more by CaCl2 and MgCl2 than by the other salts, and the average desorption rates of eight soil samples at 3.5% salt concentration were 11.15% and 10.80%, respectively, which were much higher than those of NaCl (4.05%), Na2SO4 (0.41%), and NaNO3 (0.33%). Ca2+ and Mg2+ showed better ion exchange capacity than Na+ to promote Cd release; for anions, Cl− formed hydrophilic Cd chloride complexes with Cd in soil. In addition, principal component analysis results revealed that Cd release was mainly influenced by soil texture, cation exchange capacity, and iron–manganese oxide content of the soil. The Cd release level for different soil samples was most closely related to the proportion of fine particles in the soil. The higher the clay content was, the higher the Cd desorption rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.