Many researchers have argued that humanity will create artificial general intelligence (AGI) within the next twenty to one hundred years. It has been suggested that AGI may inflict serious damage to human well-being on a global scale ('catastrophic risk'). After summarizing the arguments for why AGI may pose such a risk, we review the fieldʼs proposed responses to AGI risk. We consider societal proposals, proposals for external constraints on AGI behaviors and proposals for creating AGIs that are safe due to their internal design.
Purpose: This paper formalizes long-term trajectories of human civilization as a scientific and ethical field of study. The long-term trajectory of human civilization can be defined as the path that human civilization takes during the entire future time period in which human civilization could continue to exist. Approach: We focus on four types of trajectories: status quo trajectories, in which human civilization persists in a state broadly similar to its current state into the distant future; catastrophe trajectories, in which one or more events cause significant harm to human civilization; technological transformation trajectories, in which radical technological breakthroughs put human civilization on a fundamentally different course; and astronomical trajectories, in which human civilization expands beyond its home planet and into the accessible portions of the cosmos. Findings: Status quo trajectories appear unlikely to persist into the distant future, especially in light of long-term astronomical processes. Several catastrophe, technological transformation, and astronomical trajectories appear possible. Value: Some current actions may be able to affect the long-term trajectory. Whether these actions should be pursued depends on a mix of empirical and ethical factors. For some ethical frameworks, these actions may be especially important to pursue.
Predicting the development of artificial intelligence (AI) is a difficult project -but a vital one, according to some analysts. AI predictions already abound: but are they reliable? This paper will start by proposing a decomposition schema for classifying them. Then it constructs a variety of theoretical tools for analysing, judging and improving them. These tools are demonstrated by careful analysis of five famous AI predictions: the initial Dartmouth conference, Dreyfus's criticism of AI, Searle's Chinese Room paper, Kurzweil's predictions in the 'Age of Spiritual Machines', and Omohundro's 'AI Drives' paper. These case studies illustrate several important principles, such as the general overconfidence of experts, the superiority of models over expert judgement, and the need for greater uncertainty in all types of predictions. The general reliability of expert judgement in AI timeline predictions is shown to be poor, a result that fits in with previous studies of expert competence.//
This paper will look at the various predictions that have been made about AI and propose decomposition schemas for analyzing them. It will propose a variety of theoretical tools for analyzing, judging, and improving these predictions. Focusing specifically on timeline predictions (dates given by which we should expect the creation of AI), it will show that there are strong theoretical grounds to expect predictions to be quite poor in this area. Using a database of 95 AI timeline predictions, it will show that these expectations are borne out in practice: expert predictions contradict each other considerably, and are indistinguishable from non-expert predictions and past failed predictions. Predictions that AI lie 15 to 25 years in the future are the most common, from experts and non-experts alike.
I survey four categories of factors that might give a digital mind, such as an upload or an artificial general intelligence, an advantage over humans. Hardware advantages include greater serial speeds and greater parallel speeds. Self-improvement advantages include improvement of algorithms, design of new mental modules, and modification of motivational system. Cooperative advantages include copyability, perfect cooperation , improved communication, and transfer of skills. Human handicaps include computational limitations and faulty heuristics, human-centric biases, and socially motivated cognition. The shape of hardware growth curves, as well as the ease of modifying minds, are found to have a major impact on how quickly a digital mind may take advantage of these factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.