Abstract:The effects of temperature and rainfall changes on hydropower generation in Ghana from 1960-2011 were examined to understand country-wide trends of climate variability. Moreover, the discharge and the water level trends for the Akosombo reservoir from 1965-2014 were examined using the Mann-Kendall test statistic to assess localised changes. The annual temperature trend was positive while rainfall showed both negative and positive trends in different parts of the country. However, these trends were not statistically significant in the study regions in 1960 to 2011. Rainfall was not evenly distributed throughout the years, with the highest rainfall recorded between 1960 and 1970 and the lowest rainfalls between 2000 and 2011. The Mann-Kendall test shows an upward trend for the discharge of the Akosombo reservoir and a downward trend for the water level. However, the discharge irregularities of the reservoir do not necessarily affect the energy generated from the Akosombo plant, but rather the regular low flow of water into the reservoir affected power generation. This is the major concern for the operations of the Akosombo hydropower plant for energy generation in Ghana.
Malaria is considered endemic in over hundred countries across the globe. Many cases of malaria and deaths due to malaria occur in Sub-Saharan Africa. The disease is of great public health concern since it affects people of all age groups more especially pregnant women and children because of their vulnerability. This study sought to use vector autoregression (VAR) models to model the impact of climatic variability on malaria. Monthly climatic data (rainfall, maximum temperature, and relative humidity) from 2010 to 2015 were obtained from the Ghana Meteorological Agency while data on malaria for the same period were obtained from the Ghana Health Service. Results of the Granger and instantaneous causality tests led to a conclusion that malaria is influenced by all three climatic variables. The impulse response analyses indicated that the highest positive effect of maximum temperature, relative humidity, and rainfall on malaria is observed in the months of September, March, and October, respectively. The decomposition of forecast variance indicates varying degree of malaria dependence on the climatic variables, with as high as 12.65% of the variability in the trend of malaria which has been explained by past innovations in maximum temperature alone. This is quite significant and therefore, policy-makers should not ignore temperature when formulating policies to address malaria.
River discharge data offer a rich source of information for reservoir management and flood control, if modelling can separate out the effects of rainfall, land use, soil type, relief, and weather conditions. In this paper, we model river discharge data from the Black Volta River, using Generalised Additive Mixed Models (GAMMs) with a space-time interaction represented via a tensor product of continuous time and discrete space. River discharge data from January 2000 to December 2009 for the four gauge stations along the Black Volta River namely, Lawra, Chache, Bui and Bamboi were obtained from the hydrological services department of Ghana and used for model fitting. Four GAMMs were explored, two with space-time interactions and two without space-time interactions. The comparison of the performance of the models with space-time interactions and those without space-time interactions based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) suggests that in this application, the former is better overall and in particular for modelling local variations. Further, a model with space and time main effects performed better compared with one without space and time main effects. After model selection, checking and validation, there is evidence for increasing river discharge from the most upstream gauge station to the most downstream gauge station for the study period.
Message flooding has been extensively used in wireless mobile ad hoc networks for activities such as route and resource discovery. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon has been shown to greatly increase the network communication overhead and endto-end delay. In this paper, we propose a probabilistic method of flooding that adjusts the forwarding probability at a node using its local topological characteristics. Our simulation analysis reveals that equipping a routing protocol with the proposed adjusted probabilistic flooding for route discovery can result in a significant reduction of routing control overhead while achieving good throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.