Electrification is a frequently discussed solution for reducing transport related carbon dioxide emissions. However, transport sectors such as aviation and heavy-duty vehicles remain dependent on on-board fuels. Here, biomethane is still a little exploited solution, and the case of heavy-duty vehicles is particularly underappreciated despite the recent technical advances and potentially notable emission reductions. This paper discusses the potential of biomethane in heavy-duty road transport in the case of Finland, where the utilization rate is low compared to the technical potential. To this end, the potential of biomethane production through both anaerobic digestion and gasification was calculated in three scenarios for the heavy-duty transport fleet, based on the literature values of biomethane potential and truck class fuel consumption. The authors find that approximately half of the heavy-duty transport in Finland could be biomethane fueled by 2030. The estimated production costs for biomethane (81-190 €/MWh) would be competitive with the current consumer diesel price (152 €/MWh). Utilizing the total biomethane potential in heavy-duty transport would furthermore decrease the respective carbon dioxide emissions by 50%. To accelerate the transition in the heavy-duty transport sector, a more comprehensive political framework is needed, taking into account both production and consumption.
Food systems are increasingly exposed to disruptions and shocks, and they are projected to increase in the future. Most recently, the war in Ukraine and Covid-19 pandemic has increased concerns about the ability to secure the availability of food at stable prices. This article presents a food system resilience framework to promote a national foresight system to better prepare for shocks and disruptions. Our study identified four key elements of resilience: system thinking through science and communication; redundancy of activities and networks; diversity of production and partners; and buffering strategies. Three national means to enhance resilience in the Finnish food system included domestic protein crop production, renewable energy production, and job creation measures. Primary production was perceived as the cornerstone for food system resilience, and the shocks and disruptions that it confronts therefore call for a sufficient and diverse domestic production volume, supported by the available domestic renewable energy. A dialogue between different actors in the food system was highlighted to format a situational picture and enable a rapid response. Our study suggests that to a certain point, concentration and interdependence in the food system increase dialogue and cooperation. For critical resources, sufficient reserve stocks buffer disruptions over a short period in the event of unexpected production or market disruptions. Introducing and strengthening the identified resilience elements and means to the food system call for the preparation of a more holistic and coherent food system policy that acknowledges and emphasises resilience alongside efficiency.
Sudden shocks, disturbances, and changes in today’s and the future’s operating environment call for a more resilient food system. COVID-19 and Russia’s latest war in Ukraine have revealed that rapid shocks and disturbances in global social-ecological systems can affect societies and pose various risks to food security. The discussion of food security and especially food supply security under uncertain changes has therefore been highlighted. In this study, food system resilience and the driving forces and current trends affecting it were evaluated in an expert panel study. We used the Delphi technique for the data collection, which included several rounds of iterative evaluation of future food system development up to 2030. We analysed the results using cluster analysis. Based on the results, three clusters were identified which weigh different points within the development foci of food system resilience, namely: (1) the lack of efficient and consensual global crisis preparedness, (2) looking after domestic food production, and (3) trusting the current good efforts in resilience building. The key resilience determinants in each cluster and their importance analysis are presented. We also present enablers and barriers from techno-economic, politico-institutional, and socio-cognitive perspectives that hinder or support resilience building.
Food systems are increasingly exposed to disruptions and shocks, and they are projected to increase in the future. Most recently, the Covid-19 pandemic has increased concerns about the ability to secure the availability of food at stable prices. This article presents a food system resilience framework to promote a national foresight system to better prepare for shocks and disruptions. Our study identified four key elements of resilience: system thinking through science and communication; redundancy of activities and networks; diversity of production and partners; and buffering strategies. Three national means to enhance resilience in the Finnish food system included domestic protein crop production, renewable energy production, and job creation measures. Primary production was perceived as the cornerstone for food system resilience, and the shocks and disruptions that it confronts therefore call for a sufficient and diverse domestic production volume, supported by the available domestic renewable energy. A dialogue between different actors in the food system was highlighted to format a situational picture and enable a rapid response. Our study suggests that to a certain point, concentration and interdependence in the food system increase dialogue and cooperation. For critical resources, sufficient reserve stocks buffer disruptions over a short period in the event of unexpected production or market disruptions. Introducing and strengthening the identified resilience elements and means to the food system call for the preparation of a more holistic and coherent food system policy that acknowledges and emphasises resilience alongside efficiency.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.