This study investigates the feasibility of using an organic substrate in the form of acetic acid to enable wastewater denitrification in a Sequencing Batch Biofilm Reactor (SBBR). The impact of nitrates presence on the yield of biological dephosphatation was determined as well. The experiment included 296 cycles and was divided into 4 series differing in the load of nitrates. The N:(C and P) ratios were: 7:(140 and 7); 35:(140 and 7); 70:(140 and 7) and 140:(140 and 7). The hydraulic retention time in the reactor was 12h (6h of mixing-dissolved oxygen concentration below 0.1 and 6h of aeration-concentration of dissolved oxygen 3.0±0.8 mgO 2 •dm-3). The study demonstrated that the 30-day adaptation period (60 cycles) was sufficient for the development of a stable biofilm. The C:N ratio of 2 ensured the total nitrogen concentration in the effluent below 1 mgN•dm-3. The mean efficiency of biological dephosphatation reached 7.0, 17.4, 18.7, and 30.3% in series 1-4, respectively. In the case of series 2 and 3, no significant differences were demonstrated in the total phosphorus concentration in the effluent. In the other series, the differences turned out to be significant.
Large volumes of pavement de-icing and anti-icing fluids, collectively termed de-icing agents, are used at airports to facilitate wintertime safe air travel. After use, most of the them get typically mixed with storm water runoff and may enter soil and waters near the airports. Wastewater resulting from airports’ winter operations is contaminated mainly with nitrogen and carbon compounds. Previous research results have shown that the use of biofilters filled with lightweight aggregates prepared from fly ash from sewage sludge thermal treatment (FASST LWA) could be an effective method for removing nitrogen and organic compounds at low temperatures, i.e., 0–8 °C. For this to be possible, it is necessary to maintain a proper ratio between the amounts of carbon and nitrogen in the treated wastewater, through the simultaneous application of de-icing agents containing urea and carbon compounds. Biofilter technology is part of the concept of sustainable development. Their filling is made of waste materials and one of the pollutants (organic compounds) present in the wastewater is used to remove other pollutants (nitrogen compounds). In this study, technological systems for the treatment of wastewater containing airport runway de-icing agents with biofilters were proposed, which allow for the treated wastewater to be discharged into natural waters, soil, and sewerage network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.