Corneal evaluation in ophthalmology necessitates cellular-resolution and fast imaging techniques allowing accurate diagnoses. Currently, the fastest volumetric imaging technique is Fourier-domain full-field optical coherence tomography (FD-FF-OCT) that uses a fast camera and a rapidly tunable laser source. Here, we demonstrate high-resolution, highspeed, non-contact corneal volumetric imaging in vivo with FD-FF-OCT that can acquire a single 3D volume with a voxel rate of 7.8 GHz. The spatial coherence of the laser source was suppressed to prevent it from focusing to a spot on the retina, and therefore, exceeding the maximum permissible exposure (MPE). Inherently volumetric nature of FD-FF-OCT data enabled flattening of curved corneal layers. Acquired FD-FF-OCT images revealed corneal cellular structures, such as epithelium, stroma and endothelium, as well as subbasal and midstromal nerves.
Droplet microfluidics disrupted analytical biology with the introduction of digital polymerase chain reaction and single-cell sequencing. The same technology may also bring important innovation in the analysis of bacteria, including antibiotic susceptibility testing at the single-cell level. Still, despite promising demonstrations, the lack of a highthroughput label-free method of detecting bacteria in nanoliter droplets prohibits analysis of the most interesting strains and widespread use of droplet technologies in analytical microbiology. We use a sensitive and fast measurement of scattered light from nanoliter droplets to demonstrate reliable detection of the proliferation of encapsulated bacteria. We verify the sensitivity of the method by simultaneous readout of fluorescent signals from bacteria expressing fluorescent proteins and demonstrate label-free readout on unlabeled Gram-negative and Gram-positive species. Our approach requires neither genetic modification of the cells nor the addition of chemical markers of metabolism. It is compatible with a wide range of bacterial species of clinical, research, and industrial interest, opening the microfluidic droplet technologies for adaptation in these fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.