We propose a novel tomographic measurement approach that enables a noise suppressed characterization of microstructures. The idea of this work is based on a finding that coherent noise in the input phase data generates an artificial circular structure whose magnitude is the highest at the centre of tomographic reconstruction. This method decreases the noise level by applying an unconventional tomographic measurement configuration with an object deliberately shifted with respect to the rotation axis. This enables a spatial separation between the reconstructed sample structure and the area of the largest refractive index perturbations. The input phase data defocusing that is a by-product of the introduced modification is numerically corrected with an automatic focus correction algorithm. The proposed method is validated with simulations and experimental measurements of an optical microtip.
Abstract:The paper presents two novel, space-domain reconstruction algorithms for holographic tomography utilizing scanning of illumination and a fixed detector that is highly suitable for imaging of living biomedical specimens. The first proposed algorithm is an adaptation of the filtered backpropagation to the scanning illumination tomography. Its spacedomain implementation enables avoiding the error-prone interpolation in the Fourier domain, which is a significant problem of the state-of-the-art tomographic algorithm. The second proposed algorithm is a modified version of the former, which ensures the spatially invariant reconstruction accuracy. The utility of the proposed algorithms is demonstrated with numerical simulations and experimental measurement of a cancer cell.
A new holographic data processing path for accurate quantitative tomographic reconstruction of 3D samples placed in a cylindrical capillary is proposed. The method considers strong unintentional focusing effects induced by the inner cylindrical boundary of the vessel: 1) introduction of cylindrical wave illumination of a sample, and 2) object wave deformation. The first issue is addressed by developing an arbitrary illumination tomographic reconstruction algorithm based on filtered backpropagation, while the second by a novel correction algorithm utilizing the optical rays analysis. Moreover, the processing path includes a novel holographic method for correction of spherical aberration related to refraction at a planar surface. Utility of the developed data processing path is proven with numerical simulations and experimental measurement of a specially prepared test sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.