Lateral flow assay (LFA) technology has recently received interest in the biochemical field since it is simple, low-cost, and rapid, while conventional laboratory test procedures are complicated, expensive, and time-consuming. In this paper, we propose a robust smartphone-based analyte detection method that estimates the amount of analyte on an LFA strip using a smartphone camera. The proposed method can maintain high estimation accuracy under various illumination conditions without additional devices, unlike conventional methods. The robustness and simplicity of the proposed method are enabled by novel image processing and machine learning techniques. For the performance analysis, we applied the proposed method to LFA strips where the target analyte is albumin protein of human serum. We use two sets of training LFA strips and one set of testing LFA strips. Here, each set consists of five strips having different quantities of albumin—10 femtograms, 100 femtograms, 1 picogram, 10 picograms, and 100 picograms. A linear regression analysis approximates the analyte quantity, and then machine learning classifier, support vector machine (SVM), which is trained by the regression results, classifies the analyte quantity on the LFA strip in an optimal way. Experimental results show that the proposed smartphone application can detect the quantity of albumin protein on a test LFA set with 98% accuracy, on average, in real time.
The advent of smartphones has advanced the use of embedded sensors to acquire various physiological information. For example, smartphone camera sensors and accelerometers can provide heart rhythm signals to the subjects, while microphones can give respiratory signals. However, the acquired smartphone-based physiological signals are more vulnerable to motion and noise artifacts (MNAs) compared to using medical devices, since subjects need to hold the smartphone with proper contact to the smartphone camera and lens stably and tightly for a duration of time without any movement in the hand or finger. This results in more MNA than traditional methods, such as placing a finger inside a tightly enclosed pulse oximeter to get PPG signals, which provides stable contact between the sensor and the subject’s finger. Moreover, a smartphone lens does not block ambient light in an effective way, while pulse oximeters are designed to block the ambient light effectively. In this paper, we propose a novel diversity method for smartphone signals that reduces the effect of MNAs during heart rhythm signal detection by 1) acquiring two heterogeneous signals from a color intensity signal and a fingertip movement signal, and 2) selecting the less MNA-corrupted signal of the two signals. The proposed method has advantages in that 1) diversity gain can be obtained from the two heterogeneous signals when one signal is clean while the other signal is corrupted, and 2) acquisition of the two heterogeneous signals does not double the acquisition procedure but maintains a single acquisition procedure, since two heterogeneous signals can be obtained from a single smartphone camera recording. In our diversity method, we propose to choose the better signal based on the signal quality indices (SQIs), i.e., standard deviation of instantaneous heart rate ( STD – HR ), root mean square of the successive differences of peak-to-peak time intervals ( RMSSD – T ), and standard deviation of peak values ( STD – PV ). As a performance metric evaluating the proposed diversity method, the ratio of usable period is considered. Experimental results show that our diversity method increases the usable period 19.53% and 6.25% compared to the color intensity or the fingertip movement signals only, respectively.
Measuring body sizes accurately and rapidly for optimal garment fit detection has been a challenge for fashion retailers. Especially for apparel e-commerce, there is an increasing need for digital and convenient ways to obtain body measurements to provide their customers with correct-fitting products. However, the currently available methods depend on cumbersome and complex 3D reconstruction-based approaches. In this paper, we propose a novel smartphone-based body size measurement method that does not require any additional objects of a known size as a reference when acquiring a subject’s body image using a smartphone. The novelty of our proposed method is that it acquires measurement positions using body proportions and machine learning techniques, and it performs 3D reconstruction of the body using measurements obtained from two silhouette images. We applied our proposed method to measure body sizes (i.e., waist, lower hip, and thigh circumferences) of males and females for selecting well-fitted pants. The experimental results show that our proposed method gives an accuracy of 95.59% on average when estimating the size of the waist, lower hip, and thigh circumferences. Our proposed method is expected to solve issues with digital body measurements and provide a convenient garment fit detection solution for online shopping.
The apparel e-commerce industry is growing day by day. In recent times, consumers are particularly interested in an easy and time-saving way of online apparel shopping. In addition, the COVID-19 pandemic has generated more need for an effective and convenient online shopping solution for consumers. However, online shopping, particularly online apparel shopping, has several challenges for consumers. These issues include sizing, fit, return, and cost concerns. Especially, the fit issue is one of the cardinal factors causing hesitance and drawback in online apparel purchases. The conventional method of clothing fit detection based on body shapes relies upon manual body measurements. Since no convenient and easy-to-use method has been proposed for body shape detection, we propose an interactive smartphone application, “SmartFit”, that will provide the optimal fitting clothing recommendation to the consumer by detecting their body shape. This optimal recommendation is provided by using image processing and machine learning that are solely dependent on smartphone images. Our preliminary assessment of the developed model shows an accuracy of 87.50% for body shape detection, producing a promising solution to the fit detection problem persisting in the digital apparel market.
Childhood obesity is a public health concern in the United States. Consequences of childhood obesity include metabolic disease and heart, lung, kidney, and other health-related comorbidities. Therefore, the early determination of obesity risk is needed and predicting the trend of a child’s body mass index (BMI) at an early age is crucial. Early identification of obesity can lead to early prevention. Multiple methods have been tested and evaluated to assess obesity trends in children. Available growth charts help determine a child’s current obesity level but do not predict future obesity risk. The present methods of predicting obesity include regression analysis and machine learning-based classifications and risk factor (threshold)-based categorizations based on specific criteria. All the present techniques, especially current machine learning-based methods, require longitudinal data and information on a large number of variables related to a child’s growth (e.g., socioeconomic, family-related factors) in order to predict future obesity-risk. In this paper, we propose three different techniques for three different scenarios to predict childhood obesity based on machine learning approaches and apply them to real data. Our proposed methods predict obesity for children at five years of age using the following three data sets: (1) a single well-child visit, (2) multiple well-child visits under the age of two, and (3) multiple random well-child visits under the age of five. Our models are especially important for situations where only the current patient information is available rather than having multiple data points from regular spaced well-child visits. Our models predict obesity using basic information such as birth BMI, gestational age, BMI measures from well-child visits, and gender. Our models can predict a child’s obesity category (normal, overweight, or obese) at five years of age with an accuracy of 89%, 77%, and 89%, for the three application scenarios, respectively. Therefore, our proposed models can assist healthcare professionals by acting as a decision support tool to aid in predicting childhood obesity early in order to reduce obesity-related complications, and in turn, improve healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.