Diatoms are one of the most significant primary producers in the ocean, and the importance of viruses as a potential source of mortality for diatoms has recently been recognized. Thus far, eight different diatom viruses infecting the genera Rhizosolenia and Chaetoceros have been isolated and characterized to different extents. We report the isolation of a novel diatom virus (ClorDNAV), which causes the lysis of the bloomforming species Chaetoceros lorenzianus, and show its physiological, morphological, and genomic characteristics. The free virion was estimated to be ϳ34 nm in diameter. The arrangement of virus particles appearing in cross-section was basically a random aggregation in the nucleus. Occasionally, distinctive formations such as a ring-like array composed of 9 or 10 spherical virions or a centipede-like array composed of rod-shaped particles were also observed. The latent period and the burst size were estimated to be <48 h and 2.
A variety of studies have examined the sexual life cycle of species belonging to the genus Dinophysis Ehrenberg. Here, we used TEM to investigate the mechanism of cellular fusion during the sexual life cycle in Dinophysis fortii Pavillard. We observed that fusion always occurred between a normal-sized cell and a small cell following attachment of their ventral margins. After cell attachment, the small cell moved toward the epitheca of the normal-sized cell, and the cingular and sulcal lists of the small cell shrunk or were almost lost. The epitheca of the normal-sized cell then opened between the cingulum plates and the upper cingular list, after which the small cell was gradually engulfed. This is the first ultrastructural observation in a dinoflagellate of a larger cell opening its epitheca to engulf the smaller gamete. In another case, the normal-sized cell did not open the epitheca, the cell wall of the attached small cell underwent extensive extracellular digestion, and the cytoplasm appeared to flow into the normal-sized cell via the periflagellar area. Inflow of the nucleus was not observed in this case, suggesting that it represented a failure of sexual fusion. In both cases, membranous separations between the cytoplasm of the two cells were not observed. At the beginning of the fusion process, the nucleus of the small cell was substantially deformed. The planozygote, formed upon completion of sexual fusion, sometimes had two longitudinal flagella, but was identical to a normal vegetative cell in its cellular shape, as already mentioned by previous authors.
Waminoa litus is a zooxanthella-bearing acoel worm that infests corals. It is unique to Bilateria in that it transmits its algal symbionts vertically via eggs irrespective of the heterogeneity of the symbionts. It simultaneously harbors two dinoflagellate genera: Symbiodinium and Amphidinium. In this study, we examined the timing and vertical transmission pathway of algal symbionts in W. litus using light and electron microscopy. The oogenesis of the worm can be divided into three stages: stage I, in which the ovary is absent; stage II, the early vitellogenic zone containing immature oocytes formed in the ovary; and stage III, with both early and late vitellogenic zones in the body. In the early vitellogenic zone at stage II, oocytes are surrounded by accessory-follicle cells (AFCs). Both Symbiodinium and Amphidinium symbionts are not initially observed in the oocytes, but are observed in the AFCs. In the late vitellogenic zone at stage III, oocytes are enveloped by a complete sheath of AFCs; the algal symbionts are taken up by the late vitellogenic oocytes. These observations suggest that AFCs mediate the transfer of the algae from the parent to the oocytes. Ribotype analyses of the Symbiodinium symbionts revealed that they differ from those harbored by coral in the same experimental aquarium. These results indicate that W. litus has an active algal transport pathway and maintains a specific lineage of Symbiodinium via vertical transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.