Purpose To evaluate the effect of eculizumab, a systemic inhibitor of complement component (C5), on the growth of geographic atrophy (GA) in patients with age-related macular degeneration (AMD). Design Prospective, double-masked, randomized clinical trial. Participants Patients with GA measuring from 1.25 to 18 mm2 based on spectral-domain optical coherence tomography imaging. Methods Patients were randomized 2:1 to receive intravenous eculizumab or placebo over 6 months. In the eculizumab treatment arm, the first 10 patients received a low-dose regimen of 600 mg weekly for 4 weeks followed by 900 mg every 2 weeks until week 24, and the next 10 patients received a high-dose regimen of 900 mg weekly for 4 weeks followed by 1200 mg every 2 weeks until week 24. The placebo group was infused with saline. Patients were observed off treatment for an additional 26 weeks. Both normal-luminance and lowluminance visual acuities were measured throughout the study, and the low-luminance deficits were calculated as the difference between the letter scores. Main Outcome Measures Change in area of GA at 26 weeks. Results Thirty eyes of 30 patients were enrolled. Eighteen fellow eyes also met inclusion criteria and were analyzed as a secondary endpoint. For the 30 study eyes, mean square root of GA area measurements ± standard deviation at baseline were 2.55±0.94 and 2.02±0.74 mm in the eculizumab and placebo groups,respectively (P = 0.13). At 26 weeks, GA enlarged by a mean of 0.19±0.12 and 0.18±0.15 mm in the eculizumab and placebo groups, respectively (P = 0.96). At 52 weeks of follow-up, GA enlarged by a mean of 0.37±0.22 mm in the eculizumab-treated eyes and by a mean of 0.37±0.21 mm in the placebo group (P = 0.93, 2 sample t test). None of the eyes converted to wet AMD. No drug-related adverse events were identified. Conclusions Systemic complement inhibition with eculizumab was well tolerated through 6 months but did not decrease the growth rate of GA significantly. However, there was a statistically significant correlation between the lowluminance deficit at baseline and the progression of GA over 6 months.Ophthalmology 2014;121:693-701 © 2014 by the American Academy of Ophthalmology.
Age-related macular degeneration (AMD) is the most common cause of vision loss in developed countries. A defining characteristic of this disorder is the accumulation of material between Bruch's membrane and the retinal pigment epithelium (RPE), first as microscopic basal deposits and later as clinically evident drusen. The pathogenesis of these deposits remains to be defined. Biochemical and genetic studies have suggested that inflammation and complement activation may play roles in AMD. Several lines of evidence also suggest that alterations to the extracellular matrix (ECM) of the RPE and choroid contribute to the development of AMD. The inherited macular degeneration Doyne honeycomb retinal dystrophy/Malattia Leventinese is thought to be caused by an R345W mutation in the EFEMP1 gene (also called fibulin-3). The pathogenicity of this mutation has been questioned because all individuals identified to date with the R345W mutation have shared a common haplotype. We investigated the pathogenicity of this mutation in families with early-onset macular degeneration and by generating Efemp1-R345W knockin mice. Genetic studies show that one of the identified families with the R345W mutation has a novel haplotype. The mutant Efemp1-R345W mice develop deposits of material between Bruch's membrane and the RPE, which resemble basal deposits in patients with AMD. These basal deposits contain Efemp1 and Timp3, an Efemp1 interacting protein. Evidence of complement activation was detected in the RPE and Bruch's membrane of the mutant mice. These results confirm that the R345W mutation in EFEMP1 is pathogenic. Further, they suggest that alterations in the ECM may stimulate complement activation, demonstrating a potential connection between these two etiologic factors in macular degeneration.
Mutations in the gene for guanylate cyclase-activating protein-1 (GCAP1) (GUCA1A) have been associated with autosomal dominant cone dystrophy (COD3). In the present study, a severe disease phenotype in a large white family was initially shown to map to chromosome 6p21.1, the location of GUCA1A. Subsequent single-stranded conformation polymorphism analysis and direct sequencing revealed an A464G transition, causing an E155G substitution within the EF4 domain of GCAP1. Modeling of the protein structure shows that the mutation eliminates a bidentate amino acid side chain essential for Ca2+ binding. This represents the first disease-associated mutation in GCAP1, or any neuron-specific calcium-binding protein within an EF-hand domain, that directly coordinates Ca2+. The functional consequences of this substitution were investigated in an in vitro assay of retinal guanylate cyclase activation. The mutant protein activates the cyclase at low Ca2+ concentrations but fails to inactivate at high Ca2+ concentrations. The overall effect of this would be the constitutive activation of guanylate cyclase in photoreceptors, even at the high Ca2+ concentrations of the dark-adapted state, which may explain the dominant disease phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.