Modern CNC machine tools provide lookup tables to enhance the machine tool's precision but the generation of table entries can be a demanding task. In this paper, the coefficients of the 25 cubic polynomial functions used to generate the LUTs entries for a five-axis machine tool are obtained by solving a linear system incorporating a Vandermonde expansion of the nominal control jacobian. The necessary volumetric errors within the working volume are predicted from machine's geometric errors estimated by the indirect error identification method based on the on-machine touch probing measurement of a reconfigurable uncalibrated master ball artefact (RUMBA). The proposed scheme is applied to a small Mitsubishi M730 CNC machine. Two different error models are used for modeling the erroneous machine tool, one estimating mainly inter-axis errors and the other including numerous intra-axis errors. The table-based compensation is validated through additional on-machine measurements. Experimental tests demonstrate a significant reduction in volumetric errors and in the effective machine error parameters. The LUTs reduce most of the dominant machine error parameters. It is concluded that although being effective in correcting some geometric errors, the generated LUTs cannot compensate some axis misalignments such as EB(OX)A and EB(OX)Z. The Root Mean Square of the translational volumetric errors are improved from 87.3, 75.4 and 71.5 µm down to 24.8, 18.8 and 22.1 µm in the X, Y and Z directions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.