In EUROCRYPT 2018, Cid et al. [16] introduced a new concept on the cryptographic property of S-boxes: Boomerang Connectivity Table (BCT for short) for evaluating the subtleties of boomerang-style attacks. Very recently, BCT and the boomerang uniformity, the maximum value in BCT, were further studied by Boura and Canteaut [4]. Aiming at providing new insights, we show some new results about BCT and the boomerang uniformity of permutations in terms of theory and experiment in this paper. Firstly, we present an equivalent technique to compute BCT and the boomerang uniformity, which seems to be much simpler than the original definition from [16].
Permutation polynomials over finite fields play important roles in finite fields theory. They also have wide applications in many areas of science and engineering such as coding theory, cryptography, combinational design, communication theory and so on. Permutation binomials and trinomials attract people's interest due to their simple algebraic form and additional extraordinary properties. In this paper, several new classes of permutation binomials and permutation trinomials are constructed. Some of these permutation polynomials are generalizations of known ones.
Permutation trinomials over finite fields consititute an active research due to their simple algebraic form, additional extraordinary properties and their wide applications in many areas of science and engineering. In the present paper, six new classes of permutation trinomials over finite fields of even characteristic are constructed from six fractional polynomials. Further, three classes of permutation trinomials over finite fields of characteristic three are raised. Distinct from most of the known permutation trinomials which are with fixed exponents, our results are some general classes of permutation trinomials with one parameter in the exponents. Finally, we propose a few conjectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.