In this paper, we demonstrate the design of efficient and high-performance AI/Deep Learning accelerators with customized STT-MRAM and a reconfigurable core. Based on modeldriven detailed design space exploration, we present the design methodology of an innovative scratchpad-assisted on-chip STT-MRAM based buffer system for high-performance accelerators. Using analytically derived expression of memory occupancy time of AI model weights and activation maps, the volatility of STT-MRAM is adjusted with process and temperature variation aware scaling of thermal stability factor to optimize the retention time, energy, read/write latency, and area of STT-MRAM. From the analysis of modern AI workloads and accelerator implementation in 14nm technology, we verify the efficacy of our designed AI accelerator with STT-MRAM (STT-AI). Compared to an SRAMbased implementation, the STT-AI accelerator achieves 75% area and 3% power savings at iso-accuracy. Furthermore, with a relaxed bit error rate and negligible AI accuracy trade-off, the designed STT-AI Ultra accelerator achieves 75.4%, and 3.5% savings in area and power, respectively over regular SRAM-based accelerators.
Universal Adversarial Perturbations are image-agnostic and model-independent noise that when added with any image can mislead the trained Deep Convolutional Neural Networks into the wrong prediction. Since these Universal Adversarial Perturbations can seriously jeopardize the security and integrity of practical Deep Learning applications, existing techniques use additional neural networks to detect the existence of these noises at the input image source. In this paper, we demonstrate an attack strategy that when activated by rogue means (e.g., malware, trojan) can bypass these existing countermeasures by augmenting the adversarial noise at the AI hardware accelerator stage. We demonstrate the accelerator-level universal adversarial noise attack on several deep Learning models using co-simulation of the software kernel of Conv2D function and the Verilog RTL model of the hardware under the FuseSoC environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.