Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD.
BackgroundThere is overwhelming evidence that dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs), mainly EPA (C20:5n-3) and DHA (C22:6n-3), has cardiovascular protective effects on patients with type 2 diabetes mellitus (T2DM) but not on healthy people. Because the T2DM heart increases fatty acid oxidation (FAO) to compensate for the diminished utilization of glucose, we hypothesize that T2DM hearts consume more n-3 PUFAs and, therefore, need more n-3 PUFAs. In the present study, we investigated the changes in cardiac n-3 PUFAs and peroxisomal beta-oxidation, which are responsible for the degradation of PUFAs in a high-fat diet (HFD) and low-dose streptozotocin- (STZ) induced type 2 diabetic rat model.Methods and resultsThe capillary gas chromatography results showed that all the n-3 (or omega-3) PUFAs, especially DHA (~50%) and EPA (~100%), were significantly decreased, and the n-6/n-3 ratio (~115%) was significantly increased in the hearts of diabetic rats. The activity of peroxisomal beta-oxidation, which is crucial to very-long-chain and unsaturated FA metabolism (including DHA), was significantly elevated in DM hearts. Additionally, the real-time PCR results showed that the mRNA expression of most peroxisomal beta-oxidation key enzymes were up-regulated in T2DM rat hearts, which might contribute to the reduction of n-3 (or omega-3) PUFAs.ConclusionIn conclusion, our results indicate that T2DM hearts consume more n-3 PUFAs, especially DHA and EPA, due to exaggerated peroxisomal beta-oxidation.
BackgroundLipotoxicity contributes to diabetic myocardial disease. In this study, we investigated the lipid species contributing to lipotoxicity and the relationship with peroxisomal β-oxidation in the heart of diabetic mice.MethodsMale C57BL/6 mice were randomly divided into a Diabetic group (intraperitoneal injection of STZ) and a Control group (saline). Cardiac function indexes [ejection fraction (EF%) and fractional shortening (FS%)] were evaluated by echocardiography. Morphological changes in the myocardial tissues and mitochondria were assessed by electron microscopy following hematoxylin and eosin staining. Blood myocardial injury indexes and lipids were measured using an automatic biochemical analyzer. Cardiac ATP levels were analyzed using a commercially available kit. mRNA levels of glucose transporter 4 (GLUT4), fatty acid binding protein 3 (FABP3), palmitoyl transferase 1α (CPT-1α), acyl-CoA oxidase 1 (AOX1), D-bifunctional protein (DBP), 3-ketoacyl-CoA thiolase A (THLA), uncoupling protein (UCP) 2 and UCP3 were investigated by quantitative reverse-transcription polymerase chain reaction. FABP3 protein expression was analyzed by Western blotting. Non-targeted metabolomics by LC-MS/MS was applied to evaluate profile of lipid metabolism in heart.ResultsCompared with controls, EF% and FS% were significantly reduced in diabetic mice. Furthermore, blood myocardial injury indexes and lipids, as well as myocardial mitochondrial cristae fusion were significantly increased. In the diabetic heart, GLUT4 expression was decreased, while expression of FABP3, CPT-1α, AOX1, DBP, THLA, UCP2 and UCP3 was increased, and ATP levels were reduced. In total, 113 lipids exhibited significant differential expression (FC > 2, P < 0.05) between the two groups, with sphingolipid metabolism identified as the top-ranking affected canonical pathway. In the diabetic heart, long-chain hydroxyl-acylcarnitines (8/8) and acylcarnitines (6/11), triglycerides (2/5), and diacyglycerol (3/7) were upregulated, while very long-chain polyunsaturated fatty acids (PUFAs) (5/6) including eicosapentaenoate, docosahexaenoate, phosphocholine (11/19), lysophosphocholine (5/9), phosphoethanolamine (7/11), lysophosphoethanolamine (7/10), phosphatidylglycerol (6/8), phosphoserine (6/8), phosphatidylinositol (2/2), phosphatidic acid (1/1), lysophosphatidic acid (1/1) and sphingomyelin (6/6) were downregulated.ConclusionsOur data suggest that the increase in toxic lipid species and decreased in PUFAs undergoing peroxisomal β-oxidation, combined with the reduction in phospholipids cause mitochondrial injury and subsequent uncoupling of phosphorylation and ATP deficiency; thereby leading to diabetic heart dysfunction.
Vancomycin is one of the most commonly used glycopeptide antiobiotics, and as such is an important emerging environmental contaminant. Pharmaceuticals and personal care products (PPCPs), such as antibiotics, are problematic since wastewater treatment processes are not completely effective at removing these chemical compounds. Since wastewater treatment processes are not completely effective, vancomycin occurs in surface water. Vancomycin and its metabolites in vivo and degradation products in aquatic environment may lead to undesirable ecological effects that threaten the environment or cause undesirable reactions that affect human health. We aimed to study vancomycin metabolism in vitro and its natural degradation in aquatic environment, as well as explore for related metabolites and degradation products. Accordingly, we established four systems, using a constant temperature oscillator at 37 °C for 10 days for vancomycin in activated rat liver microsomes (experimental system), inactivated rat liver microsomes (control system), phosphate buffer saline (PBS system) and pure water (pure water system), as well as an additional system of activated rat liver microsomes without vancomycin (blank system). The metabolism and degradation of vancomycin were studied using a high resolution and high sensitivity ultra-high performance liquid chromatography (UHPLC)-Triple-time of flight (TOF)-mass spectrometry (MS) method in positive ion mode. The compared result of activated rat liver microsomes system and inactivated rat liver microsomes system confirms that vancomycin is not metabolized in the liver. Vancomycin was degraded in the four non-blank incubation systems. The MetabolitePilot 2.0 software was used for screening the probable degradation products, as well as for establishing its associated degradation pathways. Eventually, four degradation products were identified and their chemical structures were deduced. The results of this study provide a foundation for evaluation of the effects of vancomycin and its degradation products on environmental safety and human health in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.