The purpose of this study is to characterize the dosimetric properties and accuracy of a novel treatment platform (Edge radiosurgery system) for localizing and treating patients with frameless, image‐guided stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). Initial measurements of various components of the system, such as a comprehensive assessment of the dosimetric properties of the flattening filter‐free (FFF) beams for both high definition (HD120) MLC and conical cone‐based treatment, positioning accuracy and beam attenuation of a six degree of freedom (6DoF) couch, treatment head leakage test, and integrated end‐to‐end accuracy tests, have been performed. The end‐to‐end test of the system was performed by CT imaging a phantom and registering hidden targets on the treatment couch to determine the localization accuracy of the optical surface monitoring system (OSMS), cone‐beam CT (CBCT), and MV imaging systems, as well as the radiation isocenter targeting accuracy. The deviations between the percent depth‐dose curves acquired on the new linac‐based system (Edge), and the previously published machine with FFF beams (TrueBeam) beyond Dmax were within 1.0% for both energies. The maximum deviation of output factors between the Edge and TrueBeam was 1.6%. The optimized dosimetric leaf gap values, which were fitted using Eclipse dose calculations and measurements based on representative spine radiosurgery plans, were 0.700 mm and 1.000 mm, respectively. For the conical cones, 6X FFF has sharper penumbra ranging from 1.2−1.8 mm (80%‐20%) and 1.9−3.8 mm (90%‐10%) relative to 10X FFF, which has 1.2−2.2 mm and 2.3−5.1 mm, respectively. The relative attenuation measurements of the couch for PA, PA (rails‐in), oblique, oblique (rails‐out), oblique (rails‐in) were: −2.0%, −2.5%, −15.6%, −2.5%, −5.0% for 6X FFF and −1.4%, −1.5%, −12.2%, −2.5%, −5.0% for 10X FFF, respectively, with a slight decrease in attenuation versus field size. The systematic deviation between the OSMS and CBCT was −0.4±0.2 mm, 0.1±0.3 mm, and 0.0±0.1 mm in the vertical, longitudinal, and lateral directions. The mean values and standard deviations of the average deviation and maximum deviation of the daily Winston‐Lutz tests over three months are 0.20±0.03 mm and 0.66±0.18 mm, respectively. Initial testing of this novel system demonstrates the technology to be highly accurate and suitable for frameless, linac‐based SRS and SBRT treatment.PACS number: 87.56.J‐
The purpose of this study is to evaluate the overall accuracy of intensity‐modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter‐free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG‐119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X‐FFF, 10X‐FFF) and the Exact IGRT couch was included in the dose calculation. One high‐dose point in the PTV and one low‐dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high‐ and low‐dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high‐dose point in the PTV were 0.030 ± 0.007 (range, 0.022–0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016–0.043) for the RapidArc plans. For low‐point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024–0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017–0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high‐dose region were 5.9 ± 2.7 (range, 1.4–8.6) and 3.9 ± 2.9 (range, 1.5–8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low‐dose region were 5.3 ± 2.6 (range, 1.2–7.4) and 3.7 ± 2.8 (range, 1.8–8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.PACS number: 87
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.