The Drosophila melanogaster fuzzy onions (fzo) gene encodes the first known protein mediator of mitochondrial fusion. During Drosophila spermatogenesis, mitochondria in early postmeiotic spermatids aggregate, fuse, and elongate beside the growing flagellar axoneme. fzo mutant males are defective in this developmentally regulated mitochondrial fusion and are sterile. fzo encodes a large, novel, predicted transmembrane GTPase that becomes detectable on spermatid mitochondria late in meiosis II, just prior to fusion, and disappears soon after fusion is complete. Missense mutations that alter conserved residues required for GTP binding in other GTPases inhibit the fusogenic activity of Fzo in vivo but do not affect its localization. Fzo has homologs of unknown function in mammals, nematodes, and yeast.
Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role in mitochondrial fusion. A conditional fzo1 mutation causes the mitochondrial reticulum to fragment and blocks mitochondrial fusion during yeast mating. Fzo1p is a mitochondrial integral membrane protein with its GTPase domain exposed to the cytoplasm. Point mutations that alter conserved residues in the GTPase domain do not affect Fzo1p localization but disrupt mitochondrial fusion. Suborganellar fractionation suggests that Fzo1p spans the outer and is tightly associated with the inner mitochondrial membrane. This topology may be required to coordinate the behavior of the two mitochondrial membranes during the fusion reaction. We propose that the fuzzy onions family of transmembrane GTPases act as molecular switches to regulate a key step in mitochondrial membrane docking and/or fusion.
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism's natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.
Spermatogenesis uses mitotic and meiotic cell cycles coordinated with growth and differentiation programs to generate functional sperm. Our analysis of a Drosophila mutant has revealed that asunder (asun), which encodes a conserved protein, is an essential regulator of spermatogenesis. asun spermatocytes arrest during prophase of meiosis I. Strikingly, arrested spermatocytes contain free centrosomes that fail to stably associate with the nucleus. Spermatocytes that overcome arrest exhibit severe defects in meiotic spindle assembly, chromosome segregation, and cytokinesis. Furthermore, the centriole-derived basal body is detached from the nucleus in asun postmeiotic spermatids, resulting in abnormalities later in spermatogenesis. We find that asun spermatocytes and spermatids exhibit drastic reduction of perinuclear dynein-dynactin, a microtubule motor complex. We propose a model in which asun coordinates spermatogenesis by promoting dynein-dynactin recruitment to the nuclear surface, a poorly understood process required for nucleus-centrosome coupling at M phase entry and fidelity of meiotic divisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.