A method was developed for determination of total iodine content in different standard reference materials (SRMs) and seafood products by inductively coupled plasma/mass spectrometry (ICP/MS). If iodine is present as iodide and nitric acid is used in the wet digestion system, the observed signal is not stable when iodine is measured by ICP/MS at m/z 127. To stabilize the iodine signal, 3% ammonia solution (1 + 1, v/v) was added to the digest. The limit of quantitation of the method, defined as 6 times the standard deviation in the blank solution (n = 20) was estimated to be 15 mg/kg (using 0.2 g dry mass and a dilution factor of 50). The precision, expressed as repeatability of the iodine concentration, varied between 3.2 and 12% in SRMs, with concentrations of 4.70–0.17 mg/kg dry matter. The described method was compared with a method using tetramethylammonium hydroxide extraction. Both methods showed good precision and trueness by analyses of SRMs. The 2 methods were used to determine iodine in seafood from the Barents Sea, the Norwegian Sea, and the North Sea. The results showed great variation between different fish species as well as between individuals within a species. The lowest values of iodine were recorded in muscle of ling (Molva molva) with a mean of 0.07 mg/kg fresh weight and a variation between 0.03 and 0.11 mg/kg fresh weight. The highest values were found in cod (Gadus morhua) from the Barents Sea, with a mean of 2.5 mg/kg and a variation between 0.7 and 12.7 mg/kg fresh weight.
Salmon farmers are currently using high-energy feeds containing up to 35% fat; the fish's capability of fully utilizing these high-energy feeds has received little attention. Carnitine is an essential component in the process of mitochondrial fatty acid oxidation and, with the cooperation of two carnitine palmitoyltransferases (CPT-I and CPT-II) and a carnitine acylcarnitine transporter across the inner mitochondrial membrane, acts as a carrier for acyl groups into the mitochondrial matrix where beta-oxidation occurs. However, no reports are available differentiating between CPT-I and CPT-II activities in fish. In order to investigate the potential for fatty acid catabolism, the activities of key enzymes involved in fatty acid oxidation were determined in different tissues from farmed Atlantic salmon (Salmo salar), i.e., acyl-CoA oxidase (ACO) and CPT-I and CPT-II. Malonyl-CoA was a potent inhibitor of CPT-I activity not only in red muscle but also in liver, white muscle, and heart. By expressing the enzyme activities per wet tissue, the CPT-I activity of white muscle equaled that of the red muscle, both being >> liver. CPT-II dominated in red muscle whereas the liver and white muscle activities were comparable. ACO activity was high in the liver regardless of how the data were calculated. Based on the CPT-II activity and total palmitoyl-L-carnitine oxidation in white muscle, the white muscle might have a profound role in the overall fatty acid oxidation capacity in fish.
Effect of season and diet on muscle composition were evaluated in farmed Atlantic cod (Gadus morhua L.), fed varying levels of macro‐nutrients, and kept at two different light regimes during 1 year grow‐out in sea‐cages. The cod were fed seven different diets varying in protein, lipid and starch, in a mixture design. The diets spanned 4–20% starch, 8–26% lipid and 36–66% protein. Each dietary regime was subjected to two different light regimes: continuous light (24 h), or natural light (August 2001 to June 2002). Fish subjected to natural light started to mature in December/January and spawning was more or less completed during March/April. No maturation was registered in the continuous light groups at this point. No variation was found in muscle dry matter, protein or lipid concentration as a consequence of the dietary or light regime variations, except for the groups spawning in March. Glycogen varied from 1 to 6.5 mg g−1 wet weight, without any correlation to the present dietary variations. At the June 2002 sampling all groups given a natural light regime showed almost twice the concentration of muscle glycogen compared with fish subjected to continuous light. Such clear results were not measured at the December or March samplings. Increased dietary lipid resulted in lowered muscle vitamin E concentration. A strong covariation between muscle vitamins C and E was found at all samplings, and these showed a negative correlation towards eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), and the ratio n‐3/n‐6 in muscle. The highest dietary vitamin E resulted in the lowest muscle vitamin C concentrations. All dietary lipid added was identical and of marine origin; in addition, the wheat added as a starch source summed up parts of the dietary lipid fraction, resulting in slightly decreased sum of polyenes in the diets holding the highest levels of wheat. The lean cod muscle consists almost solely of membrane lipids. These were, however, highly influenced by the dietary lipid composition, especially as concerned the different monoenes. Two of the diets showed tendencies to increased thiobarbituric acid‐reactive substances (TBARS). This was not reflected in the muscle concentrations of vitamins E or C, and did not result in any changes in muscle TBARS values at any of the samplings, except for the fish spawning in March. The water‐soluble fraction of the muscle protein, pH range from 4.5 to 6, did show a difference in structure when comparing our experimental cod to wild cod. We could also identify a differential pattern between some of the experimental groups. The method used to identify this was, however, not quantitative, and further studies are needed. Taste panel evaluation and shear force measurements after final sampling in June concluded with minor differences between muscles from the different diet groups, except for fish given one diet with relatively high protein, intermediate lipid and low starch levels. Fish kept at continuous light was described as less firm (texture) compared with fish kept ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.