A method was developed for determination of total iodine content in different standard reference materials (SRMs) and seafood products by inductively coupled plasma/mass spectrometry (ICP/MS). If iodine is present as iodide and nitric acid is used in the wet digestion system, the observed signal is not stable when iodine is measured by ICP/MS at m/z 127. To stabilize the iodine signal, 3% ammonia solution (1 + 1, v/v) was added to the digest. The limit of quantitation of the method, defined as 6 times the standard deviation in the blank solution (n = 20) was estimated to be 15 mg/kg (using 0.2 g dry mass and a dilution factor of 50). The precision, expressed as repeatability of the iodine concentration, varied between 3.2 and 12% in SRMs, with concentrations of 4.70–0.17 mg/kg dry matter. The described method was compared with a method using tetramethylammonium hydroxide extraction. Both methods showed good precision and trueness by analyses of SRMs. The 2 methods were used to determine iodine in seafood from the Barents Sea, the Norwegian Sea, and the North Sea. The results showed great variation between different fish species as well as between individuals within a species. The lowest values of iodine were recorded in muscle of ling (Molva molva) with a mean of 0.07 mg/kg fresh weight and a variation between 0.03 and 0.11 mg/kg fresh weight. The highest values were found in cod (Gadus morhua) from the Barents Sea, with a mean of 2.5 mg/kg and a variation between 0.7 and 12.7 mg/kg fresh weight.
Intake of fish and omega-3 (n-3) fatty acids is associated with a reduced concentration of plasma triacylglycerols (TAG) but the mechanisms are not fully clarified. Stearoyl-CoA desaturase-1 (SCD1) activity, governing TAG synthesis, is affected by n-3 fatty acids. Peripheral blood mononuclear cells (PBMC) display expression of genes involved in lipid metabolism. The aim of the present study was to estimate whether intake of lean and fatty fish would influence n-3 fatty acids composition in plasma phospholipids (PL), serum TAG, 18:1n-9/18:0 ratio in plasma PL, as well as PBMC gene expression of SCD1 and fatty acid synthase (FAS). Healthy males and females (n = 30), aged 20-40, consumed either 150 g of cod, salmon, or potato (control) daily for 15 days. During intervention docosahexaenoic acid (DHA, 22:6n-3) increased in the cod group (P < 0.05), while TAG concentration decreased (P < 0.05). In the salmon group both eicosapentaenoic acid (EPA, 20:5n-3) and DHA increased (P < 0.05) whereas TAG concentration and the 18:1n-9/18:0 ratio decreased (P < 0.05). Reduction of the 18:1n-9/18:0 ratio was associated with a corresponding lowering of TAG (P < 0.05) and an increase in EPA and DHA (P < 0.05). The mRNA levels of SCD1 and FAS in PBMC were not significantly altered after intake of cod or salmon when compared with the control group. In conclusion, both lean and fatty fish may lower TAG, possibly by reducing the 18:1n-9/18:0 ratio related to allosteric inhibition of SCD1 activity, rather than by influencing the synthesis of enzyme protein.
BackgroundFatty fish is the dominant dietary source of n-3 LCPUFAs but it also contains other micronutrients considered important for brain development and function. To our knowledge, the effect of fatty fish intake on cognitive function in adolescents has not been investigated in randomized controlled trials (RCTs) previously. The aim of the present trial was to investigate whether consumption of fatty fish meals three times per week for 12 weeks could alter attention performance in adolescents compared to similar meals with meat or n-3 LCPUFA supplements.MethodsIn the Fish Intervention Studies-TEENS (FINS-TEENS), adolescents from eight secondary schools (n = 426; age: 14-15y) were individually randomized. Attention performance was assessed with the d2 test of attention. Differences between groups from pre to post intervention were assessed with linear mixed effect models and general estimates equation. The fish group was set as reference. Dietary compliance was recorded for each meal throughout the trial and controlled for in the adjusted analyses.ResultsThe improvement in processing speed was significantly lower in the meat (−11.8; 95% CI: -23.3, −0.4) and supplement (−13.4; 95% CI: -24.9, −1.8) group compared to the fish group (reference). The supplement group also showed inferior improvement in total performance (−10.4; 95% CI: -20.0, −0.7) compared to the fish group (reference). The results were slightly affected when controlling for dietary compliance. Omission errors decreased in the meat group compared to the fish group (Incidence rate ratio = 0.85; 95% CI: 0.74, 0.98), but the difference disappeared when controlling for dietary compliance.ConclusionsWe observed a small beneficial effect of fatty fish, compared to meat meals and supplements on processing speed. However, these results are difficult to interpret due to low dietary compliance. This study shows that different taste preferences among participants is challenging in intervention trials with food. A prospective cohort design may be a better alternative when studying diet in the future.Trial registration numberClinicalTrials.gov registration number: NCT02350322.Electronic supplementary materialThe online version of this article (10.1186/s12937-017-0287-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.