The accumulation of PrPSc in scrapie‐infected neuronal cells has been prevented by three approaches: (i) transfection of ScMNB cells with an antisense laminin receptor precursor (LRP) RNA‐expression plasmid, (ii) transfection of ScN2a cells and ScGT1 cells with small interfering RNAs (siRNAs) specific for the LRP mRNA, and (iii) incubation of ScN2a cells with an anti‐LRP/LR antibody. LRP antisense RNA and LRP siRNAs reduced LRP/LR expression and inhibited the accumulation of PrPSc in these cells. The treatments also reduced PrPc levels. The anti‐LRP/LR antibody, W3, abolished PrPSc accumulation and reduced PrPc levels after seven days of incubation. Cells remained free of PrPSc after being cultured for 14 additional days without the antibody, whereas the PrPc level was restored. Our results demonstrate the necessity of the laminin receptor (LRP/LR) for PrPSc propagation in cultured cells and suggest that LRP/LR‐specific antibodies could be used as powerful therapeutic tools in the treatment of transmissible spongiform encephalopathies.
Prion diseases are lethal for both humans and animals, and affected individuals die after several months following a rapid disease progression. Although researchers have attempted for decades to develop effective therapeutics for the therapy of human prion disorders, until now no efficient drug has been available on the market for transmissible spongiform encephalopathy (TSE) treatment or cure. Approximately 200 patients worldwide have died or suffer from variant Creutzfeldt-Jakob disease (CJD). Incidences for sporadic and familial CJD are approximately 1.5-2 per million per year and one per 10 million per year, respectively, in Europe. This review summarizes classical and modern trials for the development of effective anti-TSE drugs, introduces potential effective delivery systems, such as lentiviral and adeno-associated virus systems for antiprion components, including antibodies and siRNAs, and presents vaccination trials. Most of the antiprion drugs target prion protein PrP(c) and/or PrP(Sc). Alternative targets are receptors and coreceptors for PrP, that is, the 37/67-kDa laminin receptor and heparan sulfate proteoglycanes. We review clinical trials for the treatment of TSEs and describe hindrances and chances for a breakthrough in therapy of prion disorders.
ERRATUMIn the February 2003 issue of EMBO reports (4, 159-165), we published an incorrect structure for [N-β-oxo-octanoyl]-homoserine lactam. The correct structure is shown below.
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(c)). 2. This article reviews the current knowledge on PrP(c) and PrP(Sc), prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.