Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities.
The development of metallodrugs with antioxidant activities is of importance as a way to protect organisms exposed to stressful conditions. Although iron chemistry in the presence of H(2)O(2) is usually associated with pro-oxidant activity, mainly via the Fenton reaction, we found that the mononuclear compound [Fe(HPClNOL)Cl(2)]NO(3) (1; C(15)H(18)Cl(3)FeN(4)O(4), a = 8.7751(3) A, b = 9.0778(4) A, c = 24.3869(10) A, beta = 93.370(2) degrees , monoclinic, P2(1)/c, Z = 4), containing the tripodal ligand 1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol, decomposes hydrogen peroxide and superoxide anion in vitro as well as shows in vivo protection because it prevents the harmful effects promoted by H(2)O(2) on Saccharomyces cerevisiae cells, decreasing the level of lipid peroxidation. This protective effect was observed for wild-type cells, as well as for mutant cells, which do not present the antioxidant metalloenzymes catalase (Ctt1) or copper/zinc superoxide dismutase (Sod1).
BackgroundThe purpose of this research is to study the relationship between superoxide dismutase (SOD) and lung redox state in an animal model of sepsis.MethodsSepsis was induced in rats by the cecal ligation and perforation model (CLP). After 3, 6, and 12 h, CLP protein content and expression of SOD1, SOD2, and SOD3 were evaluated, and SOD activity was assessed. Oxidative damage was determined by quantifying nitrotyrosine content. Lung localization of SOD3 was performed by immunohistochemistry. The protective effect of a SOD mimetic on oxidative damage, inflammation, and lung permeability was assessed 12 and 24 h after sepsis induction.ResultsLung levels of SOD1 decreased 3 and 12 h after sepsis, but SOD2 and SOD3 increased, as well as SOD activity. These alterations were not associated with changes in sod gene expression. Nitrotyrosine levels increased 3 and 12 h after sepsis. The administration of a SOD mimetic decreased nitrotyrosine and proinflammatory cytokine levels and improved lung permeability.ConclusionsSOD2 and SOD3 increased after sepsis induction, but this was insufficient to protect the lung. Treatments based on SOD mimetics could have a role in lung injury associated with sepsis.
Recebido em 29/9/08; aceito em 28/5/09; publicado na web em 10/11/09 ORGANIC COMPOUNDS CONTENTS IN CACHAÇAS PRODUCED IN THE NORTHERN RIO DE JANEIRO STATE-RJ. This work aimed to quantify some organic compounds in "cachaças" (sugar cane spirit). The ethyl alcohol was quantified by densimetry, after distillation. The acetic acid, methyl alcohol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, isoamyl alcohol (mixture of 2-methyl-butyl and 3-methyl-butyl), ethyl acetate and acetaldehyde were determined by gas chromatography; and the furfural, 5-hydroxy-methylfurfural and acrolein by high efficiency liquid chromatography. From the 30 samples analyzed, 63.3% showed non-conformity with national legislation regarding at least one of the analyzed components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.